MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zzs12 Structured version   Visualization version   GIF version

Theorem zzs12 28441
Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
zzs12 (𝐴 ∈ ℤs𝐴 ∈ ℤs[1/2])

Proof of Theorem zzs12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sno 28421 . . . . . 6 2s No
2 exps0 28428 . . . . . 6 (2s No → (2ss 0s ) = 1s )
31, 2ax-mp 5 . . . . 5 (2ss 0s ) = 1s
43oveq2i 7459 . . . 4 (𝐴 /su (2ss 0s )) = (𝐴 /su 1s )
5 zno 28386 . . . . 5 (𝐴 ∈ ℤs𝐴 No )
6 divs1 28247 . . . . 5 (𝐴 No → (𝐴 /su 1s ) = 𝐴)
75, 6syl 17 . . . 4 (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴)
84, 7eqtr2id 2793 . . 3 (𝐴 ∈ ℤs𝐴 = (𝐴 /su (2ss 0s )))
9 0n0s 28352 . . . 4 0s ∈ ℕ0s
10 oveq1 7455 . . . . . 6 (𝑥 = 𝐴 → (𝑥 /su (2ss𝑦)) = (𝐴 /su (2ss𝑦)))
1110eqeq2d 2751 . . . . 5 (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2ss𝑦)) ↔ 𝐴 = (𝐴 /su (2ss𝑦))))
12 oveq2 7456 . . . . . . 7 (𝑦 = 0s → (2ss𝑦) = (2ss 0s ))
1312oveq2d 7464 . . . . . 6 (𝑦 = 0s → (𝐴 /su (2ss𝑦)) = (𝐴 /su (2ss 0s )))
1413eqeq2d 2751 . . . . 5 (𝑦 = 0s → (𝐴 = (𝐴 /su (2ss𝑦)) ↔ 𝐴 = (𝐴 /su (2ss 0s ))))
1511, 14rspc2ev 3648 . . . 4 ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s𝐴 = (𝐴 /su (2ss 0s ))) → ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
169, 15mp3an2 1449 . . 3 ((𝐴 ∈ ℤs𝐴 = (𝐴 /su (2ss 0s ))) → ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
178, 16mpdan 686 . 2 (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
18 elzs12 28439 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
1917, 18sylibr 234 1 (𝐴 ∈ ℤs𝐴 ∈ ℤs[1/2])
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448   No csur 27702   0s c0s 27885   1s c1s 27886   /su cdivs 28231  0scnn0s 28336  sczs 28382  2sc2s 28412  scexps 28414  s[1/2]czs12 28416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-seqs 28308  df-n0s 28338  df-nns 28339  df-zs 28383  df-2s 28413  df-exps 28415  df-zs12 28417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator