![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zzs12 | Structured version Visualization version GIF version |
Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
Ref | Expression |
---|---|
zzs12 | ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sno 28418 | . . . . . 6 ⊢ 2s ∈ No | |
2 | exps0 28425 | . . . . . 6 ⊢ (2s ∈ No → (2s↑s 0s ) = 1s ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2s↑s 0s ) = 1s |
4 | 3 | oveq2i 7442 | . . . 4 ⊢ (𝐴 /su (2s↑s 0s )) = (𝐴 /su 1s ) |
5 | zno 28383 | . . . . 5 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | |
6 | divs1 28244 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴) |
8 | 4, 7 | eqtr2id 2788 | . . 3 ⊢ (𝐴 ∈ ℤs → 𝐴 = (𝐴 /su (2s↑s 0s ))) |
9 | 0n0s 28349 | . . . 4 ⊢ 0s ∈ ℕ0s | |
10 | oveq1 7438 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s𝑦))) | |
11 | 10 | eqeq2d 2746 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s𝑦)))) |
12 | oveq2 7439 | . . . . . . 7 ⊢ (𝑦 = 0s → (2s↑s𝑦) = (2s↑s 0s )) | |
13 | 12 | oveq2d 7447 | . . . . . 6 ⊢ (𝑦 = 0s → (𝐴 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s 0s ))) |
14 | 13 | eqeq2d 2746 | . . . . 5 ⊢ (𝑦 = 0s → (𝐴 = (𝐴 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s 0s )))) |
15 | 11, 14 | rspc2ev 3635 | . . . 4 ⊢ ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
16 | 9, 15 | mp3an2 1448 | . . 3 ⊢ ((𝐴 ∈ ℤs ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
17 | 8, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
18 | elzs12 28436 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 (class class class)co 7431 No csur 27699 0s c0s 27882 1s c1s 27883 /su cdivs 28228 ℕ0scnn0s 28333 ℤsczs 28379 2sc2s 28409 ↑scexps 28411 ℤs[1/2]czs12 28413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-nadd 8703 df-no 27702 df-slt 27703 df-bday 27704 df-sle 27805 df-sslt 27841 df-scut 27843 df-0s 27884 df-1s 27885 df-made 27901 df-old 27902 df-left 27904 df-right 27905 df-norec 27986 df-norec2 27997 df-adds 28008 df-negs 28068 df-subs 28069 df-muls 28148 df-divs 28229 df-seqs 28305 df-n0s 28335 df-nns 28336 df-zs 28380 df-2s 28410 df-exps 28412 df-zs12 28414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |