| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zzs12 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| zzs12 | ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28352 | . . . . . 6 ⊢ 2s ∈ No | |
| 2 | exps0 28360 | . . . . . 6 ⊢ (2s ∈ No → (2s↑s 0s ) = 1s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2s↑s 0s ) = 1s |
| 4 | 3 | oveq2i 7366 | . . . 4 ⊢ (𝐴 /su (2s↑s 0s )) = (𝐴 /su 1s ) |
| 5 | zno 28316 | . . . . 5 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | |
| 6 | divs1 28153 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴) |
| 8 | 4, 7 | eqtr2id 2781 | . . 3 ⊢ (𝐴 ∈ ℤs → 𝐴 = (𝐴 /su (2s↑s 0s ))) |
| 9 | 0n0s 28268 | . . . 4 ⊢ 0s ∈ ℕ0s | |
| 10 | oveq1 7362 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s𝑦))) | |
| 11 | 10 | eqeq2d 2744 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s𝑦)))) |
| 12 | oveq2 7363 | . . . . . . 7 ⊢ (𝑦 = 0s → (2s↑s𝑦) = (2s↑s 0s )) | |
| 13 | 12 | oveq2d 7371 | . . . . . 6 ⊢ (𝑦 = 0s → (𝐴 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s 0s ))) |
| 14 | 13 | eqeq2d 2744 | . . . . 5 ⊢ (𝑦 = 0s → (𝐴 = (𝐴 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s 0s )))) |
| 15 | 11, 14 | rspc2ev 3587 | . . . 4 ⊢ ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 16 | 9, 15 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℤs ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 17 | 8, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 18 | elzs12 28393 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 (class class class)co 7355 No csur 27588 0s c0s 27776 1s c1s 27777 /su cdivs 28136 ℕ0scnn0s 28252 ℤsczs 28312 2sc2s 28343 ↑scexps 28345 ℤs[1/2]czs12 28347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-muls 28056 df-divs 28137 df-seqs 28224 df-n0s 28254 df-nns 28255 df-zs 28313 df-2s 28344 df-exps 28346 df-zs12 28348 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |