| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zzs12 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| zzs12 | ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28362 | . . . . . 6 ⊢ 2s ∈ No | |
| 2 | exps0 28370 | . . . . . 6 ⊢ (2s ∈ No → (2s↑s 0s ) = 1s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2s↑s 0s ) = 1s |
| 4 | 3 | oveq2i 7421 | . . . 4 ⊢ (𝐴 /su (2s↑s 0s )) = (𝐴 /su 1s ) |
| 5 | zno 28327 | . . . . 5 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | |
| 6 | divs1 28164 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴) |
| 8 | 4, 7 | eqtr2id 2784 | . . 3 ⊢ (𝐴 ∈ ℤs → 𝐴 = (𝐴 /su (2s↑s 0s ))) |
| 9 | 0n0s 28279 | . . . 4 ⊢ 0s ∈ ℕ0s | |
| 10 | oveq1 7417 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s𝑦))) | |
| 11 | 10 | eqeq2d 2747 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s𝑦)))) |
| 12 | oveq2 7418 | . . . . . . 7 ⊢ (𝑦 = 0s → (2s↑s𝑦) = (2s↑s 0s )) | |
| 13 | 12 | oveq2d 7426 | . . . . . 6 ⊢ (𝑦 = 0s → (𝐴 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s 0s ))) |
| 14 | 13 | eqeq2d 2747 | . . . . 5 ⊢ (𝑦 = 0s → (𝐴 = (𝐴 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s 0s )))) |
| 15 | 11, 14 | rspc2ev 3619 | . . . 4 ⊢ ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 16 | 9, 15 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℤs ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 17 | 8, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 18 | elzs12 28394 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 (class class class)co 7410 No csur 27608 0s c0s 27791 1s c1s 27792 /su cdivs 28147 ℕ0scnn0s 28263 ℤsczs 28323 2sc2s 28353 ↑scexps 28355 ℤs[1/2]czs12 28357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-nadd 8683 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec 27902 df-norec2 27913 df-adds 27924 df-negs 27984 df-subs 27985 df-muls 28067 df-divs 28148 df-seqs 28235 df-n0s 28265 df-nns 28266 df-zs 28324 df-2s 28354 df-exps 28356 df-zs12 28358 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |