| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zzs12 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| zzs12 | ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28329 | . . . . . 6 ⊢ 2s ∈ No | |
| 2 | exps0 28337 | . . . . . 6 ⊢ (2s ∈ No → (2s↑s 0s ) = 1s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2s↑s 0s ) = 1s |
| 4 | 3 | oveq2i 7364 | . . . 4 ⊢ (𝐴 /su (2s↑s 0s )) = (𝐴 /su 1s ) |
| 5 | zno 28293 | . . . . 5 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | |
| 6 | divs1 28130 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴) |
| 8 | 4, 7 | eqtr2id 2777 | . . 3 ⊢ (𝐴 ∈ ℤs → 𝐴 = (𝐴 /su (2s↑s 0s ))) |
| 9 | 0n0s 28245 | . . . 4 ⊢ 0s ∈ ℕ0s | |
| 10 | oveq1 7360 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s𝑦))) | |
| 11 | 10 | eqeq2d 2740 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s𝑦)))) |
| 12 | oveq2 7361 | . . . . . . 7 ⊢ (𝑦 = 0s → (2s↑s𝑦) = (2s↑s 0s )) | |
| 13 | 12 | oveq2d 7369 | . . . . . 6 ⊢ (𝑦 = 0s → (𝐴 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s 0s ))) |
| 14 | 13 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = 0s → (𝐴 = (𝐴 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s 0s )))) |
| 15 | 11, 14 | rspc2ev 3592 | . . . 4 ⊢ ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 16 | 9, 15 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℤs ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 17 | 8, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 18 | elzs12 28368 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7353 No csur 27567 0s c0s 27754 1s c1s 27755 /su cdivs 28113 ℕ0scnn0s 28229 ℤsczs 28289 2sc2s 28320 ↑scexps 28322 ℤs[1/2]czs12 28324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 df-muls 28033 df-divs 28114 df-seqs 28201 df-n0s 28231 df-nns 28232 df-zs 28290 df-2s 28321 df-exps 28323 df-zs12 28325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |