| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zzs12 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| zzs12 | ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28335 | . . . . . 6 ⊢ 2s ∈ No | |
| 2 | exps0 28343 | . . . . . 6 ⊢ (2s ∈ No → (2s↑s 0s ) = 1s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2s↑s 0s ) = 1s |
| 4 | 3 | oveq2i 7352 | . . . 4 ⊢ (𝐴 /su (2s↑s 0s )) = (𝐴 /su 1s ) |
| 5 | zno 28299 | . . . . 5 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | |
| 6 | divs1 28136 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴) |
| 8 | 4, 7 | eqtr2id 2778 | . . 3 ⊢ (𝐴 ∈ ℤs → 𝐴 = (𝐴 /su (2s↑s 0s ))) |
| 9 | 0n0s 28251 | . . . 4 ⊢ 0s ∈ ℕ0s | |
| 10 | oveq1 7348 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s𝑦))) | |
| 11 | 10 | eqeq2d 2741 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s𝑦)))) |
| 12 | oveq2 7349 | . . . . . . 7 ⊢ (𝑦 = 0s → (2s↑s𝑦) = (2s↑s 0s )) | |
| 13 | 12 | oveq2d 7357 | . . . . . 6 ⊢ (𝑦 = 0s → (𝐴 /su (2s↑s𝑦)) = (𝐴 /su (2s↑s 0s ))) |
| 14 | 13 | eqeq2d 2741 | . . . . 5 ⊢ (𝑦 = 0s → (𝐴 = (𝐴 /su (2s↑s𝑦)) ↔ 𝐴 = (𝐴 /su (2s↑s 0s )))) |
| 15 | 11, 14 | rspc2ev 3588 | . . . 4 ⊢ ((𝐴 ∈ ℤs ∧ 0s ∈ ℕ0s ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 16 | 9, 15 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℤs ∧ 𝐴 = (𝐴 /su (2s↑s 0s ))) → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 17 | 8, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℤs → ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 18 | elzs12 28376 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 (class class class)co 7341 No csur 27571 0s c0s 27759 1s c1s 27760 /su cdivs 28119 ℕ0scnn0s 28235 ℤsczs 28295 2sc2s 28326 ↑scexps 28328 ℤs[1/2]czs12 28330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27574 df-slt 27575 df-bday 27576 df-sle 27677 df-sslt 27714 df-scut 27716 df-0s 27761 df-1s 27762 df-made 27781 df-old 27782 df-left 27784 df-right 27785 df-norec 27874 df-norec2 27885 df-adds 27896 df-negs 27956 df-subs 27957 df-muls 28039 df-divs 28120 df-seqs 28207 df-n0s 28237 df-nns 28238 df-zs 28296 df-2s 28327 df-exps 28329 df-zs12 28331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |