Proof of Theorem pw2cutp1
| Step | Hyp | Ref
| Expression |
| 1 | | pw2cutp1.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℤs) |
| 2 | 1 | znod 28323 |
. . 3
⊢ (𝜑 → 𝐴 ∈ No
) |
| 3 | | 1zs 28331 |
. . . . 5
⊢
1s ∈ ℤs |
| 4 | | zaddscl 28334 |
. . . . 5
⊢ ((𝐴 ∈ ℤs
∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈
ℤs) |
| 5 | 1, 3, 4 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐴 +s 1s ) ∈
ℤs) |
| 6 | 5 | znod 28323 |
. . 3
⊢ (𝜑 → (𝐴 +s 1s ) ∈ No ) |
| 7 | | pw2cutp1.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0s) |
| 8 | 2 | sltp1d 27974 |
. . 3
⊢ (𝜑 → 𝐴 <s (𝐴 +s 1s
)) |
| 9 | | 2nns 28356 |
. . . . . . . . 9
⊢
2s ∈ ℕs |
| 10 | | nnzs 28326 |
. . . . . . . . 9
⊢
(2s ∈ ℕs → 2s ∈
ℤs) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . 8
⊢
2s ∈ ℤs |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2s ∈
ℤs) |
| 13 | 12, 1 | zmulscld 28337 |
. . . . . 6
⊢ (𝜑 → (2s
·s 𝐴)
∈ ℤs) |
| 14 | | zaddscl 28334 |
. . . . . 6
⊢
(((2s ·s 𝐴) ∈ ℤs ∧
1s ∈ ℤs) → ((2s
·s 𝐴)
+s 1s ) ∈ ℤs) |
| 15 | 13, 3, 14 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) ∈ ℤs) |
| 16 | | zscut 28347 |
. . . . 5
⊢
(((2s ·s 𝐴) +s 1s ) ∈
ℤs → ((2s ·s 𝐴) +s 1s )
= ({(((2s ·s 𝐴) +s 1s )
-s 1s )} |s {(((2s ·s 𝐴) +s 1s )
+s 1s )})) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = ({(((2s ·s 𝐴) +s 1s )
-s 1s )} |s {(((2s ·s 𝐴) +s 1s )
+s 1s )})) |
| 18 | | no2times 28355 |
. . . . . . 7
⊢ (𝐴 ∈
No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) |
| 19 | 2, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → (2s
·s 𝐴) =
(𝐴 +s 𝐴)) |
| 20 | 19 | oveq1d 7420 |
. . . . 5
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = ((𝐴 +s 𝐴) +s 1s
)) |
| 21 | | 1sno 27791 |
. . . . . . 7
⊢
1s ∈ No |
| 22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1s ∈ No ) |
| 23 | 2, 2, 22 | addsassd 27965 |
. . . . 5
⊢ (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s
))) |
| 24 | 20, 23 | eqtrd 2770 |
. . . 4
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = (𝐴 +s (𝐴 +s 1s
))) |
| 25 | 13 | znod 28323 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
∈ No ) |
| 26 | | pncans 28028 |
. . . . . . 7
⊢
(((2s ·s 𝐴) ∈ No
∧ 1s ∈ No ) →
(((2s ·s 𝐴) +s 1s )
-s 1s ) = (2s ·s 𝐴)) |
| 27 | 25, 21, 26 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) -s 1s ) = (2s
·s 𝐴)) |
| 28 | 27 | sneqd 4613 |
. . . . 5
⊢ (𝜑 → {(((2s
·s 𝐴)
+s 1s ) -s 1s )} = {(2s
·s 𝐴)}) |
| 29 | | 1p1e2s 28354 |
. . . . . . . . 9
⊢ (
1s +s 1s ) = 2s |
| 30 | | 2sno 28357 |
. . . . . . . . . 10
⊢
2s ∈ No |
| 31 | | mulsrid 28068 |
. . . . . . . . . 10
⊢
(2s ∈ No →
(2s ·s 1s ) =
2s) |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . . 9
⊢
(2s ·s 1s ) =
2s |
| 33 | 29, 32 | eqtr4i 2761 |
. . . . . . . 8
⊢ (
1s +s 1s ) = (2s
·s 1s ) |
| 34 | 33 | oveq2i 7416 |
. . . . . . 7
⊢
((2s ·s 𝐴) +s ( 1s
+s 1s )) = ((2s ·s 𝐴) +s (2s
·s 1s )) |
| 35 | 25, 22, 22 | addsassd 27965 |
. . . . . . 7
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) +s 1s ) = ((2s
·s 𝐴)
+s ( 1s +s 1s ))) |
| 36 | 30 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2s ∈ No ) |
| 37 | 36, 2, 22 | addsdid 28111 |
. . . . . . 7
⊢ (𝜑 → (2s
·s (𝐴
+s 1s )) = ((2s ·s 𝐴) +s (2s
·s 1s ))) |
| 38 | 34, 35, 37 | 3eqtr4a 2796 |
. . . . . 6
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) +s 1s ) = (2s
·s (𝐴
+s 1s ))) |
| 39 | 38 | sneqd 4613 |
. . . . 5
⊢ (𝜑 → {(((2s
·s 𝐴)
+s 1s ) +s 1s )} = {(2s
·s (𝐴
+s 1s ))}) |
| 40 | 28, 39 | oveq12d 7423 |
. . . 4
⊢ (𝜑 → ({(((2s
·s 𝐴)
+s 1s ) -s 1s )} |s
{(((2s ·s 𝐴) +s 1s )
+s 1s )}) = ({(2s ·s 𝐴)} |s {(2s
·s (𝐴
+s 1s ))})) |
| 41 | 17, 24, 40 | 3eqtr3rd 2779 |
. . 3
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s
))) |
| 42 | 2, 6, 7, 8, 41 | pw2cut 28387 |
. 2
⊢ (𝜑 → ({(𝐴 /su
(2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))}) = ((𝐴 +s (𝐴 +s 1s ))
/su (2s↑s(𝑁 +s 1s
)))) |
| 43 | 24 | oveq1d 7420 |
. 2
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) /su
(2s↑s(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s ))
/su (2s↑s(𝑁 +s 1s
)))) |
| 44 | 42, 43 | eqtr4d 2773 |
1
⊢ (𝜑 → ({(𝐴 /su
(2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))}) = (((2s ·s
𝐴) +s
1s ) /su (2s↑s(𝑁 +s 1s
)))) |