MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cutp1 Structured version   Visualization version   GIF version

Theorem pw2cutp1 28343
Description: Simplify pw2cut 28342 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
Hypotheses
Ref Expression
pw2cutp1.1 (𝜑𝐴 ∈ ℤs)
pw2cutp1.3 (𝜑𝑁 ∈ ℕ0s)
Assertion
Ref Expression
pw2cutp1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cutp1
StepHypRef Expression
1 pw2cutp1.1 . . . 4 (𝜑𝐴 ∈ ℤs)
21znod 28278 . . 3 (𝜑𝐴 No )
3 1zs 28286 . . . . 5 1s ∈ ℤs
4 zaddscl 28289 . . . . 5 ((𝐴 ∈ ℤs ∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈ ℤs)
51, 3, 4sylancl 586 . . . 4 (𝜑 → (𝐴 +s 1s ) ∈ ℤs)
65znod 28278 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
7 pw2cutp1.3 . . 3 (𝜑𝑁 ∈ ℕ0s)
82sltp1d 27929 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
9 2nns 28311 . . . . . . . . 9 2s ∈ ℕs
10 nnzs 28281 . . . . . . . . 9 (2s ∈ ℕs → 2s ∈ ℤs)
119, 10ax-mp 5 . . . . . . . 8 2s ∈ ℤs
1211a1i 11 . . . . . . 7 (𝜑 → 2s ∈ ℤs)
1312, 1zmulscld 28292 . . . . . 6 (𝜑 → (2s ·s 𝐴) ∈ ℤs)
14 zaddscl 28289 . . . . . 6 (((2s ·s 𝐴) ∈ ℤs ∧ 1s ∈ ℤs) → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
1513, 3, 14sylancl 586 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
16 zscut 28302 . . . . 5 (((2s ·s 𝐴) +s 1s ) ∈ ℤs → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
1715, 16syl 17 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
18 no2times 28310 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
192, 18syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
2019oveq1d 7405 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
21 1sno 27746 . . . . . . 7 1s No
2221a1i 11 . . . . . 6 (𝜑 → 1s No )
232, 2, 22addsassd 27920 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2420, 23eqtrd 2765 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2513znod 28278 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ No )
26 pncans 27983 . . . . . . 7 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2725, 21, 26sylancl 586 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2827sneqd 4604 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
29 1p1e2s 28309 . . . . . . . . 9 ( 1s +s 1s ) = 2s
30 2sno 28312 . . . . . . . . . 10 2s No
31 mulsrid 28023 . . . . . . . . . 10 (2s No → (2s ·s 1s ) = 2s)
3230, 31ax-mp 5 . . . . . . . . 9 (2s ·s 1s ) = 2s
3329, 32eqtr4i 2756 . . . . . . . 8 ( 1s +s 1s ) = (2s ·s 1s )
3433oveq2i 7401 . . . . . . 7 ((2s ·s 𝐴) +s ( 1s +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s ))
3525, 22, 22addsassd 27920 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = ((2s ·s 𝐴) +s ( 1s +s 1s )))
3630a1i 11 . . . . . . . 8 (𝜑 → 2s No )
3736, 2, 22addsdid 28066 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
3834, 35, 373eqtr4a 2791 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = (2s ·s (𝐴 +s 1s )))
3938sneqd 4604 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) +s 1s )} = {(2s ·s (𝐴 +s 1s ))})
4028, 39oveq12d 7408 . . . 4 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
4117, 24, 403eqtr3rd 2774 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
422, 6, 7, 8, 41pw2cut 28342 . 2 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4324oveq1d 7405 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4442, 43eqtr4d 2768 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592  (class class class)co 7390   No csur 27558   |s cscut 27701   1s c1s 27742   +s cadds 27873   -s csubs 27933   ·s cmuls 28016   /su cdivs 28097  0scnn0s 28213  scnns 28214  sczs 28273  2sc2s 28303  scexps 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-dc 10406
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-2s 28304  df-exps 28306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator