MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cutp1 Structured version   Visualization version   GIF version

Theorem pw2cutp1 28391
Description: Simplify pw2cut 28390 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
Hypotheses
Ref Expression
pw2cutp1.1 (𝜑𝐴 ∈ ℤs)
pw2cutp1.3 (𝜑𝑁 ∈ ℕ0s)
Assertion
Ref Expression
pw2cutp1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cutp1
StepHypRef Expression
1 pw2cutp1.1 . . . 4 (𝜑𝐴 ∈ ℤs)
21znod 28317 . . 3 (𝜑𝐴 No )
3 1zs 28325 . . . . 5 1s ∈ ℤs
4 zaddscl 28328 . . . . 5 ((𝐴 ∈ ℤs ∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈ ℤs)
51, 3, 4sylancl 586 . . . 4 (𝜑 → (𝐴 +s 1s ) ∈ ℤs)
65znod 28317 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
7 pw2cutp1.3 . . 3 (𝜑𝑁 ∈ ℕ0s)
82sltp1d 27968 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
9 2nns 28351 . . . . . . . . 9 2s ∈ ℕs
10 nnzs 28320 . . . . . . . . 9 (2s ∈ ℕs → 2s ∈ ℤs)
119, 10ax-mp 5 . . . . . . . 8 2s ∈ ℤs
1211a1i 11 . . . . . . 7 (𝜑 → 2s ∈ ℤs)
1312, 1zmulscld 28331 . . . . . 6 (𝜑 → (2s ·s 𝐴) ∈ ℤs)
14 zaddscl 28328 . . . . . 6 (((2s ·s 𝐴) ∈ ℤs ∧ 1s ∈ ℤs) → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
1513, 3, 14sylancl 586 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
16 zscut 28341 . . . . 5 (((2s ·s 𝐴) +s 1s ) ∈ ℤs → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
1715, 16syl 17 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
18 no2times 28350 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
192, 18syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
2019oveq1d 7370 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
21 1sno 27781 . . . . . . 7 1s No
2221a1i 11 . . . . . 6 (𝜑 → 1s No )
232, 2, 22addsassd 27959 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2420, 23eqtrd 2768 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2513znod 28317 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ No )
26 pncans 28022 . . . . . . 7 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2725, 21, 26sylancl 586 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2827sneqd 4589 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
29 1p1e2s 28349 . . . . . . . . 9 ( 1s +s 1s ) = 2s
30 2sno 28352 . . . . . . . . . 10 2s No
31 mulsrid 28062 . . . . . . . . . 10 (2s No → (2s ·s 1s ) = 2s)
3230, 31ax-mp 5 . . . . . . . . 9 (2s ·s 1s ) = 2s
3329, 32eqtr4i 2759 . . . . . . . 8 ( 1s +s 1s ) = (2s ·s 1s )
3433oveq2i 7366 . . . . . . 7 ((2s ·s 𝐴) +s ( 1s +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s ))
3525, 22, 22addsassd 27959 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = ((2s ·s 𝐴) +s ( 1s +s 1s )))
3630a1i 11 . . . . . . . 8 (𝜑 → 2s No )
3736, 2, 22addsdid 28105 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
3834, 35, 373eqtr4a 2794 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = (2s ·s (𝐴 +s 1s )))
3938sneqd 4589 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) +s 1s )} = {(2s ·s (𝐴 +s 1s ))})
4028, 39oveq12d 7373 . . . 4 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
4117, 24, 403eqtr3rd 2777 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
422, 6, 7, 8, 41pw2cut 28390 . 2 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4324oveq1d 7370 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4442, 43eqtr4d 2771 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577  (class class class)co 7355   No csur 27588   |s cscut 27732   1s c1s 27777   +s cadds 27912   -s csubs 27972   ·s cmuls 28055   /su cdivs 28136  0scnn0s 28252  scnns 28253  sczs 28312  2sc2s 28343  scexps 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-dc 10347
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec 27891  df-norec2 27902  df-adds 27913  df-negs 27973  df-subs 27974  df-muls 28056  df-divs 28137  df-seqs 28224  df-n0s 28254  df-nns 28255  df-zs 28313  df-2s 28344  df-exps 28346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator