MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cutp1 Structured version   Visualization version   GIF version

Theorem pw2cutp1 28367
Description: Simplify pw2cut 28366 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
Hypotheses
Ref Expression
pw2cutp1.1 (𝜑𝐴 ∈ ℤs)
pw2cutp1.3 (𝜑𝑁 ∈ ℕ0s)
Assertion
Ref Expression
pw2cutp1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cutp1
StepHypRef Expression
1 pw2cutp1.1 . . . 4 (𝜑𝐴 ∈ ℤs)
21znod 28294 . . 3 (𝜑𝐴 No )
3 1zs 28302 . . . . 5 1s ∈ ℤs
4 zaddscl 28305 . . . . 5 ((𝐴 ∈ ℤs ∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈ ℤs)
51, 3, 4sylancl 586 . . . 4 (𝜑 → (𝐴 +s 1s ) ∈ ℤs)
65znod 28294 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
7 pw2cutp1.3 . . 3 (𝜑𝑁 ∈ ℕ0s)
82sltp1d 27945 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
9 2nns 28328 . . . . . . . . 9 2s ∈ ℕs
10 nnzs 28297 . . . . . . . . 9 (2s ∈ ℕs → 2s ∈ ℤs)
119, 10ax-mp 5 . . . . . . . 8 2s ∈ ℤs
1211a1i 11 . . . . . . 7 (𝜑 → 2s ∈ ℤs)
1312, 1zmulscld 28308 . . . . . 6 (𝜑 → (2s ·s 𝐴) ∈ ℤs)
14 zaddscl 28305 . . . . . 6 (((2s ·s 𝐴) ∈ ℤs ∧ 1s ∈ ℤs) → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
1513, 3, 14sylancl 586 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
16 zscut 28318 . . . . 5 (((2s ·s 𝐴) +s 1s ) ∈ ℤs → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
1715, 16syl 17 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
18 no2times 28327 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
192, 18syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
2019oveq1d 7368 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
21 1sno 27759 . . . . . . 7 1s No
2221a1i 11 . . . . . 6 (𝜑 → 1s No )
232, 2, 22addsassd 27936 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2420, 23eqtrd 2764 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2513znod 28294 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ No )
26 pncans 27999 . . . . . . 7 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2725, 21, 26sylancl 586 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2827sneqd 4591 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
29 1p1e2s 28326 . . . . . . . . 9 ( 1s +s 1s ) = 2s
30 2sno 28329 . . . . . . . . . 10 2s No
31 mulsrid 28039 . . . . . . . . . 10 (2s No → (2s ·s 1s ) = 2s)
3230, 31ax-mp 5 . . . . . . . . 9 (2s ·s 1s ) = 2s
3329, 32eqtr4i 2755 . . . . . . . 8 ( 1s +s 1s ) = (2s ·s 1s )
3433oveq2i 7364 . . . . . . 7 ((2s ·s 𝐴) +s ( 1s +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s ))
3525, 22, 22addsassd 27936 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = ((2s ·s 𝐴) +s ( 1s +s 1s )))
3630a1i 11 . . . . . . . 8 (𝜑 → 2s No )
3736, 2, 22addsdid 28082 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
3834, 35, 373eqtr4a 2790 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = (2s ·s (𝐴 +s 1s )))
3938sneqd 4591 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) +s 1s )} = {(2s ·s (𝐴 +s 1s ))})
4028, 39oveq12d 7371 . . . 4 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
4117, 24, 403eqtr3rd 2773 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
422, 6, 7, 8, 41pw2cut 28366 . 2 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4324oveq1d 7368 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4442, 43eqtr4d 2767 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4579  (class class class)co 7353   No csur 27567   |s cscut 27711   1s c1s 27755   +s cadds 27889   -s csubs 27949   ·s cmuls 28032   /su cdivs 28113  0scnn0s 28229  scnns 28230  sczs 28289  2sc2s 28320  scexps 28322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-dc 10359
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033  df-divs 28114  df-seqs 28201  df-n0s 28231  df-nns 28232  df-zs 28290  df-2s 28321  df-exps 28323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator