MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cutp1 Structured version   Visualization version   GIF version

Theorem pw2cutp1 28374
Description: Simplify pw2cut 28373 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
Hypotheses
Ref Expression
pw2cutp1.1 (𝜑𝐴 ∈ ℤs)
pw2cutp1.3 (𝜑𝑁 ∈ ℕ0s)
Assertion
Ref Expression
pw2cutp1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cutp1
StepHypRef Expression
1 pw2cutp1.1 . . . 4 (𝜑𝐴 ∈ ℤs)
21znod 28300 . . 3 (𝜑𝐴 No )
3 1zs 28308 . . . . 5 1s ∈ ℤs
4 zaddscl 28311 . . . . 5 ((𝐴 ∈ ℤs ∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈ ℤs)
51, 3, 4sylancl 586 . . . 4 (𝜑 → (𝐴 +s 1s ) ∈ ℤs)
65znod 28300 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
7 pw2cutp1.3 . . 3 (𝜑𝑁 ∈ ℕ0s)
82sltp1d 27951 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
9 2nns 28334 . . . . . . . . 9 2s ∈ ℕs
10 nnzs 28303 . . . . . . . . 9 (2s ∈ ℕs → 2s ∈ ℤs)
119, 10ax-mp 5 . . . . . . . 8 2s ∈ ℤs
1211a1i 11 . . . . . . 7 (𝜑 → 2s ∈ ℤs)
1312, 1zmulscld 28314 . . . . . 6 (𝜑 → (2s ·s 𝐴) ∈ ℤs)
14 zaddscl 28311 . . . . . 6 (((2s ·s 𝐴) ∈ ℤs ∧ 1s ∈ ℤs) → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
1513, 3, 14sylancl 586 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
16 zscut 28324 . . . . 5 (((2s ·s 𝐴) +s 1s ) ∈ ℤs → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
1715, 16syl 17 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
18 no2times 28333 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
192, 18syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
2019oveq1d 7356 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
21 1sno 27764 . . . . . . 7 1s No
2221a1i 11 . . . . . 6 (𝜑 → 1s No )
232, 2, 22addsassd 27942 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2420, 23eqtrd 2765 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2513znod 28300 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ No )
26 pncans 28005 . . . . . . 7 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2725, 21, 26sylancl 586 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2827sneqd 4586 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
29 1p1e2s 28332 . . . . . . . . 9 ( 1s +s 1s ) = 2s
30 2sno 28335 . . . . . . . . . 10 2s No
31 mulsrid 28045 . . . . . . . . . 10 (2s No → (2s ·s 1s ) = 2s)
3230, 31ax-mp 5 . . . . . . . . 9 (2s ·s 1s ) = 2s
3329, 32eqtr4i 2756 . . . . . . . 8 ( 1s +s 1s ) = (2s ·s 1s )
3433oveq2i 7352 . . . . . . 7 ((2s ·s 𝐴) +s ( 1s +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s ))
3525, 22, 22addsassd 27942 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = ((2s ·s 𝐴) +s ( 1s +s 1s )))
3630a1i 11 . . . . . . . 8 (𝜑 → 2s No )
3736, 2, 22addsdid 28088 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
3834, 35, 373eqtr4a 2791 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = (2s ·s (𝐴 +s 1s )))
3938sneqd 4586 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) +s 1s )} = {(2s ·s (𝐴 +s 1s ))})
4028, 39oveq12d 7359 . . . 4 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
4117, 24, 403eqtr3rd 2774 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
422, 6, 7, 8, 41pw2cut 28373 . 2 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4324oveq1d 7356 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4442, 43eqtr4d 2768 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  {csn 4574  (class class class)co 7341   No csur 27571   |s cscut 27715   1s c1s 27760   +s cadds 27895   -s csubs 27955   ·s cmuls 28038   /su cdivs 28119  0scnn0s 28235  scnns 28236  sczs 28295  2sc2s 28326  scexps 28328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-dc 10329
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-divs 28120  df-seqs 28207  df-n0s 28237  df-nns 28238  df-zs 28296  df-2s 28327  df-exps 28329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator