MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cutp1 Structured version   Visualization version   GIF version

Theorem pw2cutp1 28388
Description: Simplify pw2cut 28387 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
Hypotheses
Ref Expression
pw2cutp1.1 (𝜑𝐴 ∈ ℤs)
pw2cutp1.3 (𝜑𝑁 ∈ ℕ0s)
Assertion
Ref Expression
pw2cutp1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))

Proof of Theorem pw2cutp1
StepHypRef Expression
1 pw2cutp1.1 . . . 4 (𝜑𝐴 ∈ ℤs)
21znod 28323 . . 3 (𝜑𝐴 No )
3 1zs 28331 . . . . 5 1s ∈ ℤs
4 zaddscl 28334 . . . . 5 ((𝐴 ∈ ℤs ∧ 1s ∈ ℤs) → (𝐴 +s 1s ) ∈ ℤs)
51, 3, 4sylancl 586 . . . 4 (𝜑 → (𝐴 +s 1s ) ∈ ℤs)
65znod 28323 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
7 pw2cutp1.3 . . 3 (𝜑𝑁 ∈ ℕ0s)
82sltp1d 27974 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
9 2nns 28356 . . . . . . . . 9 2s ∈ ℕs
10 nnzs 28326 . . . . . . . . 9 (2s ∈ ℕs → 2s ∈ ℤs)
119, 10ax-mp 5 . . . . . . . 8 2s ∈ ℤs
1211a1i 11 . . . . . . 7 (𝜑 → 2s ∈ ℤs)
1312, 1zmulscld 28337 . . . . . 6 (𝜑 → (2s ·s 𝐴) ∈ ℤs)
14 zaddscl 28334 . . . . . 6 (((2s ·s 𝐴) ∈ ℤs ∧ 1s ∈ ℤs) → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
1513, 3, 14sylancl 586 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℤs)
16 zscut 28347 . . . . 5 (((2s ·s 𝐴) +s 1s ) ∈ ℤs → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
1715, 16syl 17 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}))
18 no2times 28355 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
192, 18syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
2019oveq1d 7420 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
21 1sno 27791 . . . . . . 7 1s No
2221a1i 11 . . . . . 6 (𝜑 → 1s No )
232, 2, 22addsassd 27965 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2420, 23eqtrd 2770 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
2513znod 28323 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ No )
26 pncans 28028 . . . . . . 7 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2725, 21, 26sylancl 586 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2827sneqd 4613 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
29 1p1e2s 28354 . . . . . . . . 9 ( 1s +s 1s ) = 2s
30 2sno 28357 . . . . . . . . . 10 2s No
31 mulsrid 28068 . . . . . . . . . 10 (2s No → (2s ·s 1s ) = 2s)
3230, 31ax-mp 5 . . . . . . . . 9 (2s ·s 1s ) = 2s
3329, 32eqtr4i 2761 . . . . . . . 8 ( 1s +s 1s ) = (2s ·s 1s )
3433oveq2i 7416 . . . . . . 7 ((2s ·s 𝐴) +s ( 1s +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s ))
3525, 22, 22addsassd 27965 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = ((2s ·s 𝐴) +s ( 1s +s 1s )))
3630a1i 11 . . . . . . . 8 (𝜑 → 2s No )
3736, 2, 22addsdid 28111 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
3834, 35, 373eqtr4a 2796 . . . . . 6 (𝜑 → (((2s ·s 𝐴) +s 1s ) +s 1s ) = (2s ·s (𝐴 +s 1s )))
3938sneqd 4613 . . . . 5 (𝜑 → {(((2s ·s 𝐴) +s 1s ) +s 1s )} = {(2s ·s (𝐴 +s 1s ))})
4028, 39oveq12d 7423 . . . 4 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s {(((2s ·s 𝐴) +s 1s ) +s 1s )}) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
4117, 24, 403eqtr3rd 2779 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
422, 6, 7, 8, 41pw2cut 28387 . 2 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4324oveq1d 7420 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))) = ((𝐴 +s (𝐴 +s 1s )) /su (2ss(𝑁 +s 1s ))))
4442, 43eqtr4d 2773 1 (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4601  (class class class)co 7405   No csur 27603   |s cscut 27746   1s c1s 27787   +s cadds 27918   -s csubs 27978   ·s cmuls 28061   /su cdivs 28142  0scnn0s 28258  scnns 28259  sczs 28318  2sc2s 28348  scexps 28350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-dc 10460
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-divs 28143  df-seqs 28230  df-n0s 28260  df-nns 28261  df-zs 28319  df-2s 28349  df-exps 28351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator