| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zs12negscl | Structured version Visualization version GIF version | ||
| Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| zs12negscl | ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7356 | . . . . . . 7 ⊢ (𝑧 = ( -us ‘𝑥) → (𝑧 /su (2s↑s𝑦)) = (( -us ‘𝑥) /su (2s↑s𝑦))) | |
| 2 | 1 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑧 = ( -us ‘𝑥) → (( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦)))) |
| 3 | znegscl 28287 | . . . . . . 7 ⊢ (𝑥 ∈ ℤs → ( -us ‘𝑥) ∈ ℤs) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘𝑥) ∈ ℤs) |
| 5 | zno 28277 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤs → 𝑥 ∈ No ) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑥 ∈ No ) |
| 7 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑦 ∈ ℕ0s) | |
| 8 | 6, 7 | pw2divsnegd 28343 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦))) |
| 9 | 2, 4, 8 | rspcedvdw 3580 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦))) |
| 10 | fveq2 6822 | . . . . . . 7 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → ( -us ‘𝐴) = ( -us ‘(𝑥 /su (2s↑s𝑦)))) | |
| 11 | 10 | eqeq1d 2731 | . . . . . 6 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 12 | 11 | rexbidv 3153 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 13 | 9, 12 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 14 | 13 | rexlimdva 3130 | . . 3 ⊢ (𝑦 ∈ ℕ0s → (∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 15 | 14 | reximia 3064 | . 2 ⊢ (∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 16 | elzs12 28354 | . . 3 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 17 | rexcom 3258 | . . 3 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 18 | 16, 17 | bitri 275 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 19 | elzs12 28354 | . . 3 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 20 | rexcom 3258 | . . 3 ⊢ (∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 21 | 19, 20 | bitri 275 | . 2 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 22 | 15, 18, 21 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6482 (class class class)co 7349 No csur 27549 -us cnegs 27932 /su cdivs 28097 ℕ0scnn0s 28213 ℤsczs 28273 2sc2s 28304 ↑scexps 28306 ℤs[1/2]czs12 28308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27739 df-1s 27740 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 df-divs 28098 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-2s 28305 df-exps 28307 df-zs12 28309 |
| This theorem is referenced by: zs12subscl 28360 zs12negsclb 28362 |
| Copyright terms: Public domain | W3C validator |