| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zs12negscl | Structured version Visualization version GIF version | ||
| Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| zs12negscl | ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . . . . 7 ⊢ (𝑧 = ( -us ‘𝑥) → (𝑧 /su (2s↑s𝑦)) = (( -us ‘𝑥) /su (2s↑s𝑦))) | |
| 2 | 1 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑧 = ( -us ‘𝑥) → (( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦)))) |
| 3 | znegscl 28321 | . . . . . . 7 ⊢ (𝑥 ∈ ℤs → ( -us ‘𝑥) ∈ ℤs) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘𝑥) ∈ ℤs) |
| 5 | zno 28311 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤs → 𝑥 ∈ No ) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑥 ∈ No ) |
| 7 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑦 ∈ ℕ0s) | |
| 8 | 6, 7 | pw2divsnegd 28377 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦))) |
| 9 | 2, 4, 8 | rspcedvdw 3588 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦))) |
| 10 | fveq2 6840 | . . . . . . 7 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → ( -us ‘𝐴) = ( -us ‘(𝑥 /su (2s↑s𝑦)))) | |
| 11 | 10 | eqeq1d 2731 | . . . . . 6 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 12 | 11 | rexbidv 3157 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 13 | 9, 12 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 14 | 13 | rexlimdva 3134 | . . 3 ⊢ (𝑦 ∈ ℕ0s → (∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 15 | 14 | reximia 3064 | . 2 ⊢ (∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 16 | elzs12 28386 | . . 3 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 17 | rexcom 3264 | . . 3 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 18 | 16, 17 | bitri 275 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 19 | elzs12 28386 | . . 3 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 20 | rexcom 3264 | . . 3 ⊢ (∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 21 | 19, 20 | bitri 275 | . 2 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 22 | 15, 18, 21 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6499 (class class class)co 7369 No csur 27585 -us cnegs 27966 /su cdivs 28131 ℕ0scnn0s 28247 ℤsczs 28307 2sc2s 28338 ↑scexps 28340 ℤs[1/2]czs12 28342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-1s 27775 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 df-subs 27969 df-muls 28051 df-divs 28132 df-seqs 28219 df-n0s 28249 df-nns 28250 df-zs 28308 df-2s 28339 df-exps 28341 df-zs12 28343 |
| This theorem is referenced by: zs12subscl 28392 zs12negsclb 28394 |
| Copyright terms: Public domain | W3C validator |