| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zs12negscl | Structured version Visualization version GIF version | ||
| Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| zs12negscl | ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . . . . 7 ⊢ (𝑧 = ( -us ‘𝑥) → (𝑧 /su (2s↑s𝑦)) = (( -us ‘𝑥) /su (2s↑s𝑦))) | |
| 2 | 1 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑧 = ( -us ‘𝑥) → (( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦)))) |
| 3 | znegscl 28316 | . . . . . . 7 ⊢ (𝑥 ∈ ℤs → ( -us ‘𝑥) ∈ ℤs) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘𝑥) ∈ ℤs) |
| 5 | zno 28306 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤs → 𝑥 ∈ No ) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑥 ∈ No ) |
| 7 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑦 ∈ ℕ0s) | |
| 8 | 6, 7 | pw2divsnegd 28372 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦))) |
| 9 | 2, 4, 8 | rspcedvdw 3575 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦))) |
| 10 | fveq2 6822 | . . . . . . 7 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → ( -us ‘𝐴) = ( -us ‘(𝑥 /su (2s↑s𝑦)))) | |
| 11 | 10 | eqeq1d 2733 | . . . . . 6 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 12 | 11 | rexbidv 3156 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 13 | 9, 12 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 14 | 13 | rexlimdva 3133 | . . 3 ⊢ (𝑦 ∈ ℕ0s → (∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 15 | 14 | reximia 3067 | . 2 ⊢ (∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 16 | elzs12 28383 | . . 3 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 17 | rexcom 3261 | . . 3 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 18 | 16, 17 | bitri 275 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 19 | elzs12 28383 | . . 3 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 20 | rexcom 3261 | . . 3 ⊢ (∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 21 | 19, 20 | bitri 275 | . 2 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 22 | 15, 18, 21 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ‘cfv 6481 (class class class)co 7346 No csur 27578 -us cnegs 27961 /su cdivs 28126 ℕ0scnn0s 28242 ℤsczs 28302 2sc2s 28333 ↑scexps 28335 ℤs[1/2]czs12 28337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-muls 28046 df-divs 28127 df-seqs 28214 df-n0s 28244 df-nns 28245 df-zs 28303 df-2s 28334 df-exps 28336 df-zs12 28338 |
| This theorem is referenced by: zs12subscl 28389 zs12negsclb 28391 |
| Copyright terms: Public domain | W3C validator |