| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zs12negscl | Structured version Visualization version GIF version | ||
| Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| zs12negscl | ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . . . . . 7 ⊢ (𝑧 = ( -us ‘𝑥) → (𝑧 /su (2s↑s𝑦)) = (( -us ‘𝑥) /su (2s↑s𝑦))) | |
| 2 | 1 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑧 = ( -us ‘𝑥) → (( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦)))) |
| 3 | znegscl 28332 | . . . . . . 7 ⊢ (𝑥 ∈ ℤs → ( -us ‘𝑥) ∈ ℤs) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘𝑥) ∈ ℤs) |
| 5 | zno 28322 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤs → 𝑥 ∈ No ) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑥 ∈ No ) |
| 7 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → 𝑦 ∈ ℕ0s) | |
| 8 | 6, 7 | pw2divsnegd 28384 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ( -us ‘(𝑥 /su (2s↑s𝑦))) = (( -us ‘𝑥) /su (2s↑s𝑦))) |
| 9 | 2, 4, 8 | rspcedvdw 3604 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦))) |
| 10 | fveq2 6876 | . . . . . . 7 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → ( -us ‘𝐴) = ( -us ‘(𝑥 /su (2s↑s𝑦)))) | |
| 11 | 10 | eqeq1d 2737 | . . . . . 6 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 12 | 11 | rexbidv 3164 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → (∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑧 ∈ ℤs ( -us ‘(𝑥 /su (2s↑s𝑦))) = (𝑧 /su (2s↑s𝑦)))) |
| 13 | 9, 12 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 14 | 13 | rexlimdva 3141 | . . 3 ⊢ (𝑦 ∈ ℕ0s → (∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)))) |
| 15 | 14 | reximia 3071 | . 2 ⊢ (∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦)) → ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 16 | elzs12 28389 | . . 3 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 17 | rexcom 3271 | . . 3 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 18 | 16, 17 | bitri 275 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑥 ∈ ℤs 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| 19 | elzs12 28389 | . . 3 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 20 | rexcom 3271 | . . 3 ⊢ (∃𝑧 ∈ ℤs ∃𝑦 ∈ ℕ0s ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦)) ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) | |
| 21 | 19, 20 | bitri 275 | . 2 ⊢ (( -us ‘𝐴) ∈ ℤs[1/2] ↔ ∃𝑦 ∈ ℕ0s ∃𝑧 ∈ ℤs ( -us ‘𝐴) = (𝑧 /su (2s↑s𝑦))) |
| 22 | 15, 18, 21 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 No csur 27603 -us cnegs 27977 /su cdivs 28142 ℕ0scnn0s 28258 ℤsczs 28318 2sc2s 28348 ↑scexps 28350 ℤs[1/2]czs12 28352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-muls 28062 df-divs 28143 df-seqs 28230 df-n0s 28260 df-nns 28261 df-zs 28319 df-2s 28349 df-exps 28351 df-zs12 28353 |
| This theorem is referenced by: zs12negsclb 28393 |
| Copyright terms: Public domain | W3C validator |