MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12addscl Structured version   Visualization version   GIF version

Theorem zs12addscl 28389
Description: The dyadics are closed under addition. (Contributed by Scott Fenton, 11-Dec-2025.)
Assertion
Ref Expression
zs12addscl ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2])

Proof of Theorem zs12addscl
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28385 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)))
2 elzs12 28385 . 2 (𝐵 ∈ ℤs[1/2] ↔ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚)))
3 reeanv 3207 . . . . 5 (∃𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
432rexbii 3109 . . . 4 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ ∃𝑎 ∈ ℤs𝑏 ∈ ℤs (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
5 reeanv 3207 . . . 4 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
64, 5bitri 275 . . 3 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
7 simpll 766 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑎 ∈ ℤs)
87znod 28311 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑎 No )
9 simprl 770 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑛 ∈ ℕ0s)
10 simprr 772 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑚 ∈ ℕ0s)
118, 9, 10pw2divscan4d 28371 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑎 /su (2ss𝑛)) = (((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))))
12 simplr 768 . . . . . . . . . . . 12 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑏 ∈ ℤs)
1312znod 28311 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑏 No )
1413, 10, 9pw2divscan4d 28371 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑏 /su (2ss𝑚)) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑚 +s 𝑛))))
1510n0snod 28258 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑚 No )
169n0snod 28258 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑛 No )
1715, 16addscomd 27914 . . . . . . . . . . . 12 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑚 +s 𝑛) = (𝑛 +s 𝑚))
1817oveq2d 7385 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss(𝑚 +s 𝑛)) = (2ss(𝑛 +s 𝑚)))
1918oveq2d 7385 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (((2ss𝑛) ·s 𝑏) /su (2ss(𝑚 +s 𝑛))) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚))))
2014, 19eqtrd 2764 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑏 /su (2ss𝑚)) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚))))
2111, 20oveq12d 7387 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) = ((((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))) +s (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚)))))
22 2sno 28346 . . . . . . . . . . 11 2s No
23 expscl 28358 . . . . . . . . . . 11 ((2s No 𝑚 ∈ ℕ0s) → (2ss𝑚) ∈ No )
2422, 10, 23sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑚) ∈ No )
2524, 8mulscld 28078 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑚) ·s 𝑎) ∈ No )
26 expscl 28358 . . . . . . . . . . 11 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
2722, 9, 26sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑛) ∈ No )
2827, 13mulscld 28078 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑛) ·s 𝑏) ∈ No )
29 n0addscl 28276 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 +s 𝑚) ∈ ℕ0s)
3029adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑛 +s 𝑚) ∈ ℕ0s)
3125, 28, 30pw2divsdird 28375 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))) +s (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚)))))
3221, 31eqtr4d 2767 . . . . . . 7 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
33 oveq1 7376 . . . . . . . . . 10 (𝑐 = (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) → (𝑐 /su (2ss𝑝)) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)))
3433eqeq2d 2740 . . . . . . . . 9 (𝑐 = (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) → (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)) ↔ ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝))))
35 oveq2 7377 . . . . . . . . . . 11 (𝑝 = (𝑛 +s 𝑚) → (2ss𝑝) = (2ss(𝑛 +s 𝑚)))
3635oveq2d 7385 . . . . . . . . . 10 (𝑝 = (𝑛 +s 𝑚) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
3736eqeq2d 2740 . . . . . . . . 9 (𝑝 = (𝑛 +s 𝑚) → (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)) ↔ ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚)))))
38 2nns 28345 . . . . . . . . . . . . 13 2s ∈ ℕs
39 nnzs 28314 . . . . . . . . . . . . 13 (2s ∈ ℕs → 2s ∈ ℤs)
4038, 39ax-mp 5 . . . . . . . . . . . 12 2s ∈ ℤs
41 zexpscl 28361 . . . . . . . . . . . 12 ((2s ∈ ℤs𝑚 ∈ ℕ0s) → (2ss𝑚) ∈ ℤs)
4240, 10, 41sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑚) ∈ ℤs)
4342, 7zmulscld 28325 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑚) ·s 𝑎) ∈ ℤs)
44 zexpscl 28361 . . . . . . . . . . . 12 ((2s ∈ ℤs𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ ℤs)
4540, 9, 44sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑛) ∈ ℤs)
4645, 12zmulscld 28325 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑛) ·s 𝑏) ∈ ℤs)
4743, 46zaddscld 28323 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) ∈ ℤs)
48 eqidd 2730 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
4934, 37, 47, 30, 482rspcedvdw 3599 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ∃𝑐 ∈ ℤs𝑝 ∈ ℕ0s ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)))
50 elzs12 28385 . . . . . . . 8 (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) ∈ ℤs[1/2] ↔ ∃𝑐 ∈ ℤs𝑝 ∈ ℕ0s ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)))
5149, 50sylibr 234 . . . . . . 7 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) ∈ ℤs[1/2])
5232, 51eqeltrd 2828 . . . . . 6 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) ∈ ℤs[1/2])
53 oveq12 7378 . . . . . . 7 ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) = ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))))
5453eleq1d 2813 . . . . . 6 ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → ((𝐴 +s 𝐵) ∈ ℤs[1/2] ↔ ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) ∈ ℤs[1/2]))
5552, 54syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2]))
5655rexlimdvva 3192 . . . 4 ((𝑎 ∈ ℤs𝑏 ∈ ℤs) → (∃𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2]))
5756rexlimivv 3177 . . 3 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
586, 57sylbir 235 . 2 ((∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
591, 2, 58syl2anb 598 1 ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7369   No csur 27584   +s cadds 27906   ·s cmuls 28049   /su cdivs 28130  0scnn0s 28246  scnns 28247  sczs 28306  2sc2s 28337  scexps 28339  s[1/2]czs12 28341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-muls 28050  df-divs 28131  df-seqs 28218  df-n0s 28248  df-nns 28249  df-zs 28307  df-2s 28338  df-exps 28340  df-zs12 28342
This theorem is referenced by:  zs12subscl  28391
  Copyright terms: Public domain W3C validator