MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12addscl Structured version   Visualization version   GIF version

Theorem zs12addscl 28387
Description: The dyadics are closed under addition. (Contributed by Scott Fenton, 11-Dec-2025.)
Assertion
Ref Expression
zs12addscl ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2])

Proof of Theorem zs12addscl
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28383 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)))
2 elzs12 28383 . 2 (𝐵 ∈ ℤs[1/2] ↔ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚)))
3 reeanv 3204 . . . . 5 (∃𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
432rexbii 3108 . . . 4 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ ∃𝑎 ∈ ℤs𝑏 ∈ ℤs (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
5 reeanv 3204 . . . 4 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs (∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
64, 5bitri 275 . . 3 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) ↔ (∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))))
7 simpll 766 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑎 ∈ ℤs)
87znod 28307 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑎 No )
9 simprl 770 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑛 ∈ ℕ0s)
10 simprr 772 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑚 ∈ ℕ0s)
118, 9, 10pw2divscan4d 28367 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑎 /su (2ss𝑛)) = (((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))))
12 simplr 768 . . . . . . . . . . . 12 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑏 ∈ ℤs)
1312znod 28307 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑏 No )
1413, 10, 9pw2divscan4d 28367 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑏 /su (2ss𝑚)) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑚 +s 𝑛))))
1510n0snod 28254 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑚 No )
169n0snod 28254 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → 𝑛 No )
1715, 16addscomd 27910 . . . . . . . . . . . 12 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑚 +s 𝑛) = (𝑛 +s 𝑚))
1817oveq2d 7362 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss(𝑚 +s 𝑛)) = (2ss(𝑛 +s 𝑚)))
1918oveq2d 7362 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (((2ss𝑛) ·s 𝑏) /su (2ss(𝑚 +s 𝑛))) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚))))
2014, 19eqtrd 2766 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑏 /su (2ss𝑚)) = (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚))))
2111, 20oveq12d 7364 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) = ((((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))) +s (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚)))))
22 2sno 28342 . . . . . . . . . . 11 2s No
23 expscl 28354 . . . . . . . . . . 11 ((2s No 𝑚 ∈ ℕ0s) → (2ss𝑚) ∈ No )
2422, 10, 23sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑚) ∈ No )
2524, 8mulscld 28074 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑚) ·s 𝑎) ∈ No )
26 expscl 28354 . . . . . . . . . . 11 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
2722, 9, 26sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑛) ∈ No )
2827, 13mulscld 28074 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑛) ·s 𝑏) ∈ No )
29 n0addscl 28272 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 +s 𝑚) ∈ ℕ0s)
3029adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (𝑛 +s 𝑚) ∈ ℕ0s)
3125, 28, 30pw2divsdird 28371 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) /su (2ss(𝑛 +s 𝑚))) +s (((2ss𝑛) ·s 𝑏) /su (2ss(𝑛 +s 𝑚)))))
3221, 31eqtr4d 2769 . . . . . . 7 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
33 oveq1 7353 . . . . . . . . . 10 (𝑐 = (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) → (𝑐 /su (2ss𝑝)) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)))
3433eqeq2d 2742 . . . . . . . . 9 (𝑐 = (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) → (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)) ↔ ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝))))
35 oveq2 7354 . . . . . . . . . . 11 (𝑝 = (𝑛 +s 𝑚) → (2ss𝑝) = (2ss(𝑛 +s 𝑚)))
3635oveq2d 7362 . . . . . . . . . 10 (𝑝 = (𝑛 +s 𝑚) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
3736eqeq2d 2742 . . . . . . . . 9 (𝑝 = (𝑛 +s 𝑚) → (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss𝑝)) ↔ ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚)))))
38 2nns 28341 . . . . . . . . . . . . 13 2s ∈ ℕs
39 nnzs 28310 . . . . . . . . . . . . 13 (2s ∈ ℕs → 2s ∈ ℤs)
4038, 39ax-mp 5 . . . . . . . . . . . 12 2s ∈ ℤs
41 zexpscl 28357 . . . . . . . . . . . 12 ((2s ∈ ℤs𝑚 ∈ ℕ0s) → (2ss𝑚) ∈ ℤs)
4240, 10, 41sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑚) ∈ ℤs)
4342, 7zmulscld 28321 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑚) ·s 𝑎) ∈ ℤs)
44 zexpscl 28357 . . . . . . . . . . . 12 ((2s ∈ ℤs𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ ℤs)
4540, 9, 44sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (2ss𝑛) ∈ ℤs)
4645, 12zmulscld 28321 . . . . . . . . . 10 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((2ss𝑛) ·s 𝑏) ∈ ℤs)
4743, 46zaddscld 28319 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → (((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) ∈ ℤs)
48 eqidd 2732 . . . . . . . . 9 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))))
4934, 37, 47, 30, 482rspcedvdw 3586 . . . . . . . 8 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ∃𝑐 ∈ ℤs𝑝 ∈ ℕ0s ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)))
50 elzs12 28383 . . . . . . . 8 (((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) ∈ ℤs[1/2] ↔ ∃𝑐 ∈ ℤs𝑝 ∈ ℕ0s ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) = (𝑐 /su (2ss𝑝)))
5149, 50sylibr 234 . . . . . . 7 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((((2ss𝑚) ·s 𝑎) +s ((2ss𝑛) ·s 𝑏)) /su (2ss(𝑛 +s 𝑚))) ∈ ℤs[1/2])
5232, 51eqeltrd 2831 . . . . . 6 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) ∈ ℤs[1/2])
53 oveq12 7355 . . . . . . 7 ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) = ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))))
5453eleq1d 2816 . . . . . 6 ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → ((𝐴 +s 𝐵) ∈ ℤs[1/2] ↔ ((𝑎 /su (2ss𝑛)) +s (𝑏 /su (2ss𝑚))) ∈ ℤs[1/2]))
5552, 54syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤs𝑏 ∈ ℤs) ∧ (𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s)) → ((𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2]))
5655rexlimdvva 3189 . . . 4 ((𝑎 ∈ ℤs𝑏 ∈ ℤs) → (∃𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2]))
5756rexlimivv 3174 . . 3 (∃𝑎 ∈ ℤs𝑏 ∈ ℤs𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s (𝐴 = (𝑎 /su (2ss𝑛)) ∧ 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
586, 57sylbir 235 . 2 ((∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) ∧ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s 𝐵 = (𝑏 /su (2ss𝑚))) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
591, 2, 58syl2anb 598 1 ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346   No csur 27578   +s cadds 27902   ·s cmuls 28045   /su cdivs 28126  0scnn0s 28242  scnns 28243  sczs 28302  2sc2s 28333  scexps 28335  s[1/2]czs12 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-divs 28127  df-seqs 28214  df-n0s 28244  df-nns 28245  df-zs 28303  df-2s 28334  df-exps 28336  df-zs12 28338
This theorem is referenced by:  zs12subscl  28389
  Copyright terms: Public domain W3C validator