MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftcnv Structured version   Visualization version   GIF version

Theorem fliftcnv 6833
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftcnv (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . . . 5 ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
41, 2, 3fliftrel 6830 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅))
5 relxp 5373 . . . 4 Rel (𝑆 × 𝑅)
6 relss 5454 . . . 4 (ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
74, 5, 6mpisyl 21 . . 3 (𝜑 → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
8 relcnv 5757 . . 3 Rel 𝐹
97, 8jctil 515 . 2 (𝜑 → (Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
10 flift.1 . . . . . . 7 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110, 3, 2fliftel 6831 . . . . . 6 (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵)))
12 vex 3400 . . . . . . 7 𝑦 ∈ V
13 vex 3400 . . . . . . 7 𝑧 ∈ V
1412, 13brcnv 5550 . . . . . 6 (𝑦𝐹𝑧𝑧𝐹𝑦)
15 ancom 454 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐴) ↔ (𝑧 = 𝐴𝑦 = 𝐵))
1615rexbii 3223 . . . . . 6 (∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴) ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵))
1711, 14, 163bitr4g 306 . . . . 5 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
181, 2, 3fliftel 6831 . . . . 5 (𝜑 → (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
1917, 18bitr4d 274 . . . 4 (𝜑 → (𝑦𝐹𝑧𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧))
20 df-br 4887 . . . 4 (𝑦𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐹)
21 df-br 4887 . . . 4 (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
2219, 20, 213bitr3g 305 . . 3 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
2322eqrelrdv2 5466 . 2 (((Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
249, 23mpancom 678 1 (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wrex 3090  wss 3791  cop 4403   class class class wbr 4886  cmpt 4965   × cxp 5353  ccnv 5354  ran crn 5356  Rel wrel 5360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143
This theorem is referenced by:  pi1xfrcnvlem  23263
  Copyright terms: Public domain W3C validator