![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftcnv | Structured version Visualization version GIF version |
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) | |
2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
4 | 1, 2, 3 | fliftrel 7322 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅)) |
5 | relxp 5700 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
6 | relss 5787 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) | |
7 | 4, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
8 | relcnv 6113 | . . 3 ⊢ Rel ◡𝐹 | |
9 | 7, 8 | jctil 518 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
11 | 10, 3, 2 | fliftel 7323 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
12 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
13 | vex 3477 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
14 | 12, 13 | brcnv 5889 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
15 | ancom 459 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
16 | 15 | rexbii 3091 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
17 | 11, 14, 16 | 3bitr4g 313 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
18 | 1, 2, 3 | fliftel 7323 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
19 | 17, 18 | bitr4d 281 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧)) |
20 | df-br 5153 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ◡𝐹) | |
21 | df-br 5153 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) | |
22 | 19, 20, 21 | 3bitr3g 312 | . . 3 ⊢ (𝜑 → (⟨𝑦, 𝑧⟩ ∈ ◡𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
23 | 22 | eqrelrdv2 5801 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
24 | 9, 23 | mpancom 686 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 ⊆ wss 3949 ⟨cop 4638 class class class wbr 5152 ↦ cmpt 5235 × cxp 5680 ◡ccnv 5681 ran crn 5683 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 df-fn 6556 df-f 6557 |
This theorem is referenced by: pi1xfrcnvlem 25011 |
Copyright terms: Public domain | W3C validator |