| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fliftcnv | Structured version Visualization version GIF version | ||
| Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) | |
| 2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 4 | 1, 2, 3 | fliftrel 7306 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅)) |
| 5 | relxp 5677 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
| 6 | relss 5765 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) | |
| 7 | 4, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 8 | relcnv 6096 | . . 3 ⊢ Rel ◡𝐹 | |
| 9 | 7, 8 | jctil 519 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 11 | 10, 3, 2 | fliftel 7307 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
| 12 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | vex 3468 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 14 | 12, 13 | brcnv 5867 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
| 15 | ancom 460 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
| 16 | 15 | rexbii 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 17 | 11, 14, 16 | 3bitr4g 314 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 18 | 1, 2, 3 | fliftel 7307 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 19 | 17, 18 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧)) |
| 20 | df-br 5125 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐹) | |
| 21 | df-br 5125 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) | |
| 22 | 19, 20, 21 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → (〈𝑦, 𝑧〉 ∈ ◡𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 23 | 22 | eqrelrdv2 5779 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 24 | 9, 23 | mpancom 688 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 ◡ccnv 5658 ran crn 5660 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: pi1xfrcnvlem 25012 |
| Copyright terms: Public domain | W3C validator |