MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftcnv Structured version   Visualization version   GIF version

Theorem fliftcnv 7098
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftcnv (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
41, 2, 3fliftrel 7095 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅))
5 relxp 5554 . . . 4 Rel (𝑆 × 𝑅)
6 relss 5638 . . . 4 (ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
74, 5, 6mpisyl 21 . . 3 (𝜑 → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
8 relcnv 5952 . . 3 Rel 𝐹
97, 8jctil 523 . 2 (𝜑 → (Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
10 flift.1 . . . . . . 7 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110, 3, 2fliftel 7096 . . . . . 6 (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵)))
12 vex 3402 . . . . . . 7 𝑦 ∈ V
13 vex 3402 . . . . . . 7 𝑧 ∈ V
1412, 13brcnv 5736 . . . . . 6 (𝑦𝐹𝑧𝑧𝐹𝑦)
15 ancom 464 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐴) ↔ (𝑧 = 𝐴𝑦 = 𝐵))
1615rexbii 3160 . . . . . 6 (∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴) ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵))
1711, 14, 163bitr4g 317 . . . . 5 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
181, 2, 3fliftel 7096 . . . . 5 (𝜑 → (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
1917, 18bitr4d 285 . . . 4 (𝜑 → (𝑦𝐹𝑧𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧))
20 df-br 5040 . . . 4 (𝑦𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐹)
21 df-br 5040 . . . 4 (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
2219, 20, 213bitr3g 316 . . 3 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
2322eqrelrdv2 5650 . 2 (((Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
249, 23mpancom 688 1 (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3052  wss 3853  cop 4533   class class class wbr 5039  cmpt 5120   × cxp 5534  ccnv 5535  ran crn 5537  Rel wrel 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-fun 6360  df-fn 6361  df-f 6362
This theorem is referenced by:  pi1xfrcnvlem  23907
  Copyright terms: Public domain W3C validator