![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftcnv | Structured version Visualization version GIF version |
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) | |
2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
4 | 1, 2, 3 | fliftrel 7307 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅)) |
5 | relxp 5694 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
6 | relss 5781 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) | |
7 | 4, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
8 | relcnv 6103 | . . 3 ⊢ Rel ◡𝐹 | |
9 | 7, 8 | jctil 520 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
11 | 10, 3, 2 | fliftel 7308 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
12 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
13 | vex 3478 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
14 | 12, 13 | brcnv 5882 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
15 | ancom 461 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
16 | 15 | rexbii 3094 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
17 | 11, 14, 16 | 3bitr4g 313 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
18 | 1, 2, 3 | fliftel 7308 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
19 | 17, 18 | bitr4d 281 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧)) |
20 | df-br 5149 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ◡𝐹) | |
21 | df-br 5149 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) | |
22 | 19, 20, 21 | 3bitr3g 312 | . . 3 ⊢ (𝜑 → (⟨𝑦, 𝑧⟩ ∈ ◡𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
23 | 22 | eqrelrdv2 5795 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
24 | 9, 23 | mpancom 686 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3948 ⟨cop 4634 class class class wbr 5148 ↦ cmpt 5231 × cxp 5674 ◡ccnv 5675 ran crn 5677 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: pi1xfrcnvlem 24579 |
Copyright terms: Public domain | W3C validator |