Proof of Theorem fpwwe2lem8
Step | Hyp | Ref
| Expression |
1 | | fpwwe2lem8.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋𝑊𝑅) |
2 | | fpwwe2.1 |
. . . . . . . . . 10
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
3 | 2 | relopabiv 5844 |
. . . . . . . . 9
⊢ Rel 𝑊 |
4 | 3 | brrelex1i 5756 |
. . . . . . . 8
⊢ (𝑋𝑊𝑅 → 𝑋 ∈ V) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ V) |
6 | | fpwwe2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | 2, 6 | fpwwe2lem2 10701 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
8 | 1, 7 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
9 | 8 | simprld 771 |
. . . . . . 7
⊢ (𝜑 → 𝑅 We 𝑋) |
10 | | fpwwe2lem8.m |
. . . . . . . 8
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
11 | 10 | oiiso 9606 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ 𝑅 We 𝑋) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
12 | 5, 9, 11 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
13 | | isof1o 7359 |
. . . . . 6
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
14 | | f1ofo 6869 |
. . . . . 6
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 → 𝑀:dom 𝑀–onto→𝑋) |
15 | | forn 6837 |
. . . . . 6
⊢ (𝑀:dom 𝑀–onto→𝑋 → ran 𝑀 = 𝑋) |
16 | 12, 13, 14, 15 | 4syl 19 |
. . . . 5
⊢ (𝜑 → ran 𝑀 = 𝑋) |
17 | | fpwwe2.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
18 | | fpwwe2lem8.y |
. . . . . . 7
⊢ (𝜑 → 𝑌𝑊𝑆) |
19 | | fpwwe2lem8.n |
. . . . . . 7
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
20 | | fpwwe2lem8.s |
. . . . . . 7
⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) |
21 | 2, 6, 17, 1, 18, 10, 19, 20 | fpwwe2lem7 10706 |
. . . . . 6
⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) |
22 | 21 | rneqd 5963 |
. . . . 5
⊢ (𝜑 → ran 𝑀 = ran (𝑁 ↾ dom 𝑀)) |
23 | 16, 22 | eqtr3d 2782 |
. . . 4
⊢ (𝜑 → 𝑋 = ran (𝑁 ↾ dom 𝑀)) |
24 | | df-ima 5713 |
. . . 4
⊢ (𝑁 “ dom 𝑀) = ran (𝑁 ↾ dom 𝑀) |
25 | 23, 24 | eqtr4di 2798 |
. . 3
⊢ (𝜑 → 𝑋 = (𝑁 “ dom 𝑀)) |
26 | | imassrn 6100 |
. . . 4
⊢ (𝑁 “ dom 𝑀) ⊆ ran 𝑁 |
27 | 3 | brrelex1i 5756 |
. . . . . . 7
⊢ (𝑌𝑊𝑆 → 𝑌 ∈ V) |
28 | 18, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ V) |
29 | 2, 6 | fpwwe2lem2 10701 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝑊𝑆 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
30 | 18, 29 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦))) |
31 | 30 | simprld 771 |
. . . . . 6
⊢ (𝜑 → 𝑆 We 𝑌) |
32 | 19 | oiiso 9606 |
. . . . . 6
⊢ ((𝑌 ∈ V ∧ 𝑆 We 𝑌) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
33 | 28, 31, 32 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
34 | | isof1o 7359 |
. . . . 5
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
35 | | f1ofo 6869 |
. . . . 5
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 → 𝑁:dom 𝑁–onto→𝑌) |
36 | | forn 6837 |
. . . . 5
⊢ (𝑁:dom 𝑁–onto→𝑌 → ran 𝑁 = 𝑌) |
37 | 33, 34, 35, 36 | 4syl 19 |
. . . 4
⊢ (𝜑 → ran 𝑁 = 𝑌) |
38 | 26, 37 | sseqtrid 4061 |
. . 3
⊢ (𝜑 → (𝑁 “ dom 𝑀) ⊆ 𝑌) |
39 | 25, 38 | eqsstrd 4047 |
. 2
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
40 | 8 | simplrd 769 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ (𝑋 × 𝑋)) |
41 | | relxp 5718 |
. . . . 5
⊢ Rel
(𝑋 × 𝑋) |
42 | | relss 5805 |
. . . . 5
⊢ (𝑅 ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel 𝑅)) |
43 | 40, 41, 42 | mpisyl 21 |
. . . 4
⊢ (𝜑 → Rel 𝑅) |
44 | | relinxp 5838 |
. . . 4
⊢ Rel
(𝑆 ∩ (𝑌 × 𝑋)) |
45 | 43, 44 | jctir 520 |
. . 3
⊢ (𝜑 → (Rel 𝑅 ∧ Rel (𝑆 ∩ (𝑌 × 𝑋)))) |
46 | 40 | ssbrd 5209 |
. . . . . . 7
⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑥(𝑋 × 𝑋)𝑦)) |
47 | | brxp 5749 |
. . . . . . 7
⊢ (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
48 | 46, 47 | imbitrdi 251 |
. . . . . 6
⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
49 | | brinxp2 5777 |
. . . . . . 7
⊢ (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) |
50 | | isocnv 7366 |
. . . . . . . . . . . . . 14
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
51 | 33, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
52 | 51 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
53 | | isof1o 7359 |
. . . . . . . . . . . 12
⊢ (◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁) → ◡𝑁:𝑌–1-1-onto→dom
𝑁) |
54 | | f1ofn 6863 |
. . . . . . . . . . . 12
⊢ (◡𝑁:𝑌–1-1-onto→dom
𝑁 → ◡𝑁 Fn 𝑌) |
55 | 52, 53, 54 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑁 Fn 𝑌) |
56 | | simprll 778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ 𝑌) |
57 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥𝑆𝑦) |
58 | 39 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 ⊆ 𝑌) |
59 | | simprlr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ 𝑋) |
60 | 58, 59 | sseldd 4009 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ 𝑌) |
61 | | isorel 7362 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑆𝑦 ↔ (◡𝑁‘𝑥) E (◡𝑁‘𝑦))) |
62 | 52, 56, 60, 61 | syl12anc 836 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (𝑥𝑆𝑦 ↔ (◡𝑁‘𝑥) E (◡𝑁‘𝑦))) |
63 | 57, 62 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) E (◡𝑁‘𝑦)) |
64 | | fvex 6933 |
. . . . . . . . . . . . . 14
⊢ (◡𝑁‘𝑦) ∈ V |
65 | 64 | epeli 5601 |
. . . . . . . . . . . . 13
⊢ ((◡𝑁‘𝑥) E (◡𝑁‘𝑦) ↔ (◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦)) |
66 | 63, 65 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦)) |
67 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑀 = (𝑁 ↾ dom 𝑀)) |
68 | 67 | cnveqd 5900 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀 = ◡(𝑁 ↾ dom 𝑀)) |
69 | | fnfun 6679 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝑁 Fn 𝑌 → Fun ◡𝑁) |
70 | | funcnvres 6656 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡𝑁 → ◡(𝑁 ↾ dom 𝑀) = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
71 | 55, 69, 70 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡(𝑁 ↾ dom 𝑀) = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
72 | 68, 71 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀 = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
73 | 72 | fveq1d 6922 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) = ((◡𝑁 ↾ (𝑁 “ dom 𝑀))‘𝑦)) |
74 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 = (𝑁 “ dom 𝑀)) |
75 | 59, 74 | eleqtrd 2846 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ (𝑁 “ dom 𝑀)) |
76 | 75 | fvresd 6940 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ((◡𝑁 ↾ (𝑁 “ dom 𝑀))‘𝑦) = (◡𝑁‘𝑦)) |
77 | 73, 76 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) = (◡𝑁‘𝑦)) |
78 | | isocnv 7366 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
79 | | isof1o 7359 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀) → ◡𝑀:𝑋–1-1-onto→dom
𝑀) |
80 | | f1of 6862 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑀:𝑋–1-1-onto→dom
𝑀 → ◡𝑀:𝑋⟶dom 𝑀) |
81 | 12, 78, 79, 80 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ◡𝑀:𝑋⟶dom 𝑀) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀:𝑋⟶dom 𝑀) |
83 | 82, 59 | ffvelcdmd 7119 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) ∈ dom 𝑀) |
84 | 77, 83 | eqeltrrd 2845 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑦) ∈ dom 𝑀) |
85 | 10 | oicl 9598 |
. . . . . . . . . . . . 13
⊢ Ord dom
𝑀 |
86 | | ordtr1 6438 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝑀 → (((◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦) ∧ (◡𝑁‘𝑦) ∈ dom 𝑀) → (◡𝑁‘𝑥) ∈ dom 𝑀)) |
87 | 85, 86 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦) ∧ (◡𝑁‘𝑦) ∈ dom 𝑀) → (◡𝑁‘𝑥) ∈ dom 𝑀) |
88 | 66, 84, 87 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) ∈ dom 𝑀) |
89 | 55, 56, 88 | elpreimad 7092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ (◡◡𝑁 “ dom 𝑀)) |
90 | | imacnvcnv 6237 |
. . . . . . . . . . 11
⊢ (◡◡𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀) |
91 | 74, 90 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 = (◡◡𝑁 “ dom 𝑀)) |
92 | 89, 91 | eleqtrrd 2847 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ 𝑋) |
93 | 92, 59 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
94 | 93 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
95 | 49, 94 | biimtrid 242 |
. . . . . 6
⊢ (𝜑 → (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
96 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑀 = (𝑁 ↾ dom 𝑀)) |
97 | 96 | cnveqd 5900 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ◡𝑀 = ◡(𝑁 ↾ dom 𝑀)) |
98 | 97 | fveq1d 6922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (◡𝑀‘𝑥) = (◡(𝑁 ↾ dom 𝑀)‘𝑥)) |
99 | 97 | fveq1d 6922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (◡𝑀‘𝑦) = (◡(𝑁 ↾ dom 𝑀)‘𝑦)) |
100 | 98, 99 | breq12d 5179 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((◡𝑀‘𝑥) E (◡𝑀‘𝑦) ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
101 | 12, 78 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
102 | | isorel 7362 |
. . . . . . . . . 10
⊢ ((◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ (◡𝑀‘𝑥) E (◡𝑀‘𝑦))) |
103 | 101, 102 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ (◡𝑀‘𝑥) E (◡𝑀‘𝑦))) |
104 | | eqidd 2741 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀)) |
105 | | isores3 7371 |
. . . . . . . . . . . . 13
⊢ ((𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) ∧ dom 𝑀 ⊆ dom 𝑁 ∧ (𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀)) → (𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀))) |
106 | 33, 20, 104, 105 | syl3anc 1371 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀))) |
107 | | isocnv 7366 |
. . . . . . . . . . . 12
⊢ ((𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀)) → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
109 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
110 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
111 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑋 = (𝑁 “ dom 𝑀)) |
112 | 110, 111 | eleqtrd 2846 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (𝑁 “ dom 𝑀)) |
113 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
114 | 113, 111 | eleqtrd 2846 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (𝑁 “ dom 𝑀)) |
115 | | isorel 7362 |
. . . . . . . . . 10
⊢ ((◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀) ∧ (𝑥 ∈ (𝑁 “ dom 𝑀) ∧ 𝑦 ∈ (𝑁 “ dom 𝑀))) → (𝑥𝑆𝑦 ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
116 | 109, 112,
114, 115 | syl12anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
117 | 100, 103,
116 | 3bitr4d 311 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) |
118 | 39 | sselda 4008 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑌) |
119 | 118 | adantrr 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑌) |
120 | 119, 113 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) |
121 | 120 | biantrurd 532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦))) |
122 | 121, 49 | bitr4di 289 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
123 | 117, 122 | bitrd 279 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
124 | 123 | ex 412 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦))) |
125 | 48, 95, 124 | pm5.21ndd 379 |
. . . . 5
⊢ (𝜑 → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
126 | | df-br 5167 |
. . . . 5
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
127 | | df-br 5167 |
. . . . 5
⊢ (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑆 ∩ (𝑌 × 𝑋))) |
128 | 125, 126,
127 | 3bitr3g 313 |
. . . 4
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ (𝑆 ∩ (𝑌 × 𝑋)))) |
129 | 128 | eqrelrdv2 5819 |
. . 3
⊢ (((Rel
𝑅 ∧ Rel (𝑆 ∩ (𝑌 × 𝑋))) ∧ 𝜑) → 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) |
130 | 45, 129 | mpancom 687 |
. 2
⊢ (𝜑 → 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) |
131 | 39, 130 | jca 511 |
1
⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |