![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmtpos | Structured version Visualization version GIF version |
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5706 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
2 | ssel 3971 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
3 | 1, 2 | mtoi 198 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
4 | df-rel 5679 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
5 | reldmtpos 8233 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
7 | relcnv 6102 | . . 3 ⊢ Rel ◡dom 𝐹 | |
8 | 6, 7 | jctir 520 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
9 | vex 3473 | . . . . . 6 ⊢ 𝑧 ∈ V | |
10 | brtpos 8234 | . . . . . 6 ⊢ (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) | |
11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) |
12 | 11 | exbidv 1917 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧)) |
13 | opex 5460 | . . . . 5 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
14 | 13 | eldm 5897 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧) |
15 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
16 | vex 3473 | . . . . . 6 ⊢ 𝑦 ∈ V | |
17 | 15, 16 | opelcnv 5878 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹) |
18 | opex 5460 | . . . . . 6 ⊢ ⟨𝑦, 𝑥⟩ ∈ V | |
19 | 18 | eldm 5897 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
20 | 17, 19 | bitri 275 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
21 | 12, 14, 20 | 3bitr4g 314 | . . 3 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹)) |
22 | 21 | eqrelrdv2 5791 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
23 | 8, 22 | mpancom 687 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 ⟨cop 4630 class class class wbr 5142 × cxp 5670 ◡ccnv 5671 dom cdm 5672 Rel wrel 5677 tpos ctpos 8224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-tpos 8225 |
This theorem is referenced by: rntpos 8238 dftpos2 8242 dftpos3 8243 tposfn2 8247 |
Copyright terms: Public domain | W3C validator |