MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpos Structured version   Visualization version   GIF version

Theorem dmtpos 8025
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Proof of Theorem dmtpos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 5614 . . . . 5 ¬ ∅ ∈ (V × V)
2 ssel 3910 . . . . 5 (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V)))
31, 2mtoi 198 . . . 4 (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹)
4 df-rel 5587 . . . 4 (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V))
5 reldmtpos 8021 . . . 4 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
63, 4, 53imtr4i 291 . . 3 (Rel dom 𝐹 → Rel dom tpos 𝐹)
7 relcnv 6001 . . 3 Rel dom 𝐹
86, 7jctir 520 . 2 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel dom 𝐹))
9 vex 3426 . . . . . 6 𝑧 ∈ V
10 brtpos 8022 . . . . . 6 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
119, 10mp1i 13 . . . . 5 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1211exbidv 1925 . . . 4 (Rel dom 𝐹 → (∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧))
13 opex 5373 . . . . 5 𝑥, 𝑦⟩ ∈ V
1413eldm 5798 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧)
15 vex 3426 . . . . . 6 𝑥 ∈ V
16 vex 3426 . . . . . 6 𝑦 ∈ V
1715, 16opelcnv 5779 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹)
18 opex 5373 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1918eldm 5798 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2017, 19bitri 274 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2112, 14, 203bitr4g 313 . . 3 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
2221eqrelrdv2 5694 . 2 (((Rel dom tpos 𝐹 ∧ Rel dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = dom 𝐹)
238, 22mpancom 684 1 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  wss 3883  c0 4253  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  dom cdm 5580  Rel wrel 5585  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-tpos 8013
This theorem is referenced by:  rntpos  8026  dftpos2  8030  dftpos3  8031  tposfn2  8035
  Copyright terms: Public domain W3C validator