| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpos | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5719 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | ssel 3977 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
| 3 | 1, 2 | mtoi 199 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
| 4 | df-rel 5692 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
| 5 | reldmtpos 8259 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
| 7 | relcnv 6122 | . . 3 ⊢ Rel ◡dom 𝐹 | |
| 8 | 6, 7 | jctir 520 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
| 9 | vex 3484 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 10 | brtpos 8260 | . . . . . 6 ⊢ (𝑧 ∈ V → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
| 11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 12 | 11 | exbidv 1921 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
| 13 | opex 5469 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 14 | 13 | eldm 5911 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
| 15 | vex 3484 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 16 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 17 | 15, 16 | opelcnv 5892 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
| 18 | opex 5469 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
| 19 | 18 | eldm 5911 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 20 | 17, 19 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 21 | 12, 14, 20 | 3bitr4g 314 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
| 22 | 21 | eqrelrdv2 5805 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
| 23 | 8, 22 | mpancom 688 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 〈cop 4632 class class class wbr 5143 × cxp 5683 ◡ccnv 5684 dom cdm 5685 Rel wrel 5690 tpos ctpos 8250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-tpos 8251 |
| This theorem is referenced by: rntpos 8264 dftpos2 8268 dftpos3 8269 tposfn2 8273 |
| Copyright terms: Public domain | W3C validator |