| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpos | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5699 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | ssel 3957 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
| 3 | 1, 2 | mtoi 199 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
| 4 | df-rel 5672 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
| 5 | reldmtpos 8241 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
| 7 | relcnv 6102 | . . 3 ⊢ Rel ◡dom 𝐹 | |
| 8 | 6, 7 | jctir 520 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
| 9 | vex 3467 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 10 | brtpos 8242 | . . . . . 6 ⊢ (𝑧 ∈ V → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
| 11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 12 | 11 | exbidv 1920 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
| 13 | opex 5449 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 14 | 13 | eldm 5891 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
| 15 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 16 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 17 | 15, 16 | opelcnv 5872 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
| 18 | opex 5449 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
| 19 | 18 | eldm 5891 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 20 | 17, 19 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 21 | 12, 14, 20 | 3bitr4g 314 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
| 22 | 21 | eqrelrdv2 5785 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
| 23 | 8, 22 | mpancom 688 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 〈cop 4612 class class class wbr 5123 × cxp 5663 ◡ccnv 5664 dom cdm 5665 Rel wrel 5670 tpos ctpos 8232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 df-tpos 8233 |
| This theorem is referenced by: rntpos 8246 dftpos2 8250 dftpos3 8251 tposfn2 8255 |
| Copyright terms: Public domain | W3C validator |