| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpos | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5653 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | ssel 3924 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
| 3 | 1, 2 | mtoi 199 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
| 4 | df-rel 5626 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
| 5 | reldmtpos 8170 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
| 7 | relcnv 6057 | . . 3 ⊢ Rel ◡dom 𝐹 | |
| 8 | 6, 7 | jctir 520 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
| 9 | vex 3441 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 10 | brtpos 8171 | . . . . . 6 ⊢ (𝑧 ∈ V → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
| 11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 12 | 11 | exbidv 1922 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
| 13 | opex 5407 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 14 | 13 | eldm 5844 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
| 15 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 16 | vex 3441 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 17 | 15, 16 | opelcnv 5825 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
| 18 | opex 5407 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
| 19 | 18 | eldm 5844 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 20 | 17, 19 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 21 | 12, 14, 20 | 3bitr4g 314 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
| 22 | 21 | eqrelrdv2 5739 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
| 23 | 8, 22 | mpancom 688 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 〈cop 4581 class class class wbr 5093 × cxp 5617 ◡ccnv 5618 dom cdm 5619 Rel wrel 5624 tpos ctpos 8161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-tpos 8162 |
| This theorem is referenced by: rntpos 8175 dftpos2 8179 dftpos3 8180 tposfn2 8184 |
| Copyright terms: Public domain | W3C validator |