![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmtpos | Structured version Visualization version GIF version |
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5700 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
2 | ssel 3967 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
3 | 1, 2 | mtoi 198 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
4 | df-rel 5673 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
5 | reldmtpos 8214 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
7 | relcnv 6093 | . . 3 ⊢ Rel ◡dom 𝐹 | |
8 | 6, 7 | jctir 520 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
9 | vex 3470 | . . . . . 6 ⊢ 𝑧 ∈ V | |
10 | brtpos 8215 | . . . . . 6 ⊢ (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) | |
11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) |
12 | 11 | exbidv 1916 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧)) |
13 | opex 5454 | . . . . 5 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
14 | 13 | eldm 5890 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧) |
15 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
16 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
17 | 15, 16 | opelcnv 5871 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹) |
18 | opex 5454 | . . . . . 6 ⊢ ⟨𝑦, 𝑥⟩ ∈ V | |
19 | 18 | eldm 5890 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
20 | 17, 19 | bitri 275 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
21 | 12, 14, 20 | 3bitr4g 314 | . . 3 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹)) |
22 | 21 | eqrelrdv2 5785 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
23 | 8, 22 | mpancom 685 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 ⟨cop 4626 class class class wbr 5138 × cxp 5664 ◡ccnv 5665 dom cdm 5666 Rel wrel 5671 tpos ctpos 8205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 df-tpos 8206 |
This theorem is referenced by: rntpos 8219 dftpos2 8223 dftpos3 8224 tposfn2 8228 |
Copyright terms: Public domain | W3C validator |