![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invsym2 | Structured version Visualization version GIF version |
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
invsym2 | β’ (π β β‘(πππ) = (πππ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . . . . 5 β’ π = (InvβπΆ) | |
3 | invfval.c | . . . . 5 β’ (π β πΆ β Cat) | |
4 | invfval.y | . . . . 5 β’ (π β π β π΅) | |
5 | invfval.x | . . . . 5 β’ (π β π β π΅) | |
6 | eqid 2732 | . . . . 5 β’ (Hom βπΆ) = (Hom βπΆ) | |
7 | 1, 2, 3, 4, 5, 6 | invss 17707 | . . . 4 β’ (π β (πππ) β ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π))) |
8 | relxp 5694 | . . . 4 β’ Rel ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) | |
9 | relss 5781 | . . . 4 β’ ((πππ) β ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) β (Rel ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) β Rel (πππ))) | |
10 | 7, 8, 9 | mpisyl 21 | . . 3 β’ (π β Rel (πππ)) |
11 | relcnv 6103 | . . 3 β’ Rel β‘(πππ) | |
12 | 10, 11 | jctil 520 | . 2 β’ (π β (Rel β‘(πππ) β§ Rel (πππ))) |
13 | 1, 2, 3, 5, 4 | invsym 17708 | . . . 4 β’ (π β (π(πππ)π β π(πππ)π)) |
14 | vex 3478 | . . . . . 6 β’ π β V | |
15 | vex 3478 | . . . . . 6 β’ π β V | |
16 | 14, 15 | brcnv 5882 | . . . . 5 β’ (πβ‘(πππ)π β π(πππ)π) |
17 | df-br 5149 | . . . . 5 β’ (πβ‘(πππ)π β β¨π, πβ© β β‘(πππ)) | |
18 | 16, 17 | bitr3i 276 | . . . 4 β’ (π(πππ)π β β¨π, πβ© β β‘(πππ)) |
19 | df-br 5149 | . . . 4 β’ (π(πππ)π β β¨π, πβ© β (πππ)) | |
20 | 13, 18, 19 | 3bitr3g 312 | . . 3 β’ (π β (β¨π, πβ© β β‘(πππ) β β¨π, πβ© β (πππ))) |
21 | 20 | eqrelrdv2 5795 | . 2 β’ (((Rel β‘(πππ) β§ Rel (πππ)) β§ π) β β‘(πππ) = (πππ)) |
22 | 12, 21 | mpancom 686 | 1 β’ (π β β‘(πππ) = (πππ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 β¨cop 4634 class class class wbr 5148 Γ cxp 5674 β‘ccnv 5675 Rel wrel 5681 βcfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 Catccat 17607 Invcinv 17691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-sect 17693 df-inv 17694 |
This theorem is referenced by: invf 17714 invf1o 17715 invinv 17716 cicsym 17750 |
Copyright terms: Public domain | W3C validator |