| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invsym2 | Structured version Visualization version GIF version | ||
| Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| invsym2 | ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invss 17668 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 8 | relxp 5634 | . . . 4 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 9 | relss 5722 | . . . 4 ⊢ ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel (𝑌𝑁𝑋)) |
| 11 | relcnv 6053 | . . 3 ⊢ Rel ◡(𝑋𝑁𝑌) | |
| 12 | 10, 11 | jctil 519 | . 2 ⊢ (𝜑 → (Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋))) |
| 13 | 1, 2, 3, 5, 4 | invsym 17669 | . . . 4 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ 𝑔(𝑌𝑁𝑋)𝑓)) |
| 14 | vex 3440 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 15 | vex 3440 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 16 | 14, 15 | brcnv 5822 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 𝑓(𝑋𝑁𝑌)𝑔) |
| 17 | df-br 5092 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) | |
| 18 | 16, 17 | bitr3i 277 | . . . 4 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) |
| 19 | df-br 5092 | . . . 4 ⊢ (𝑔(𝑌𝑁𝑋)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋)) | |
| 20 | 13, 18, 19 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → (〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌) ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋))) |
| 21 | 20 | eqrelrdv2 5735 | . 2 ⊢ (((Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 22 | 12, 21 | mpancom 688 | 1 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 class class class wbr 5091 × cxp 5614 ◡ccnv 5615 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 Invcinv 17652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sect 17654 df-inv 17655 |
| This theorem is referenced by: invf 17675 invf1o 17676 invinv 17677 cicsym 17711 |
| Copyright terms: Public domain | W3C validator |