MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym2 Structured version   Visualization version   GIF version

Theorem invsym2 17672
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym2 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))

Proof of Theorem invsym2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invss.y . . . . 5 (𝜑𝑌𝐵)
5 invss.x . . . . 5 (𝜑𝑋𝐵)
6 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 17670 . . . 4 (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
8 relxp 5637 . . . 4 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
9 relss 5726 . . . 4 ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋)))
107, 8, 9mpisyl 21 . . 3 (𝜑 → Rel (𝑌𝑁𝑋))
11 relcnv 6057 . . 3 Rel (𝑋𝑁𝑌)
1210, 11jctil 519 . 2 (𝜑 → (Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)))
131, 2, 3, 5, 4invsym 17671 . . . 4 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔𝑔(𝑌𝑁𝑋)𝑓))
14 vex 3441 . . . . . 6 𝑔 ∈ V
15 vex 3441 . . . . . 6 𝑓 ∈ V
1614, 15brcnv 5826 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓𝑓(𝑋𝑁𝑌)𝑔)
17 df-br 5094 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
1816, 17bitr3i 277 . . . 4 (𝑓(𝑋𝑁𝑌)𝑔 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
19 df-br 5094 . . . 4 (𝑔(𝑌𝑁𝑋)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋))
2013, 18, 193bitr3g 313 . . 3 (𝜑 → (⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋)))
2120eqrelrdv2 5739 . 2 (((Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → (𝑋𝑁𝑌) = (𝑌𝑁𝑋))
2212, 21mpancom 688 1 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  cop 4581   class class class wbr 5093   × cxp 5617  ccnv 5618  Rel wrel 5624  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  Catccat 17572  Invcinv 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-sect 17656  df-inv 17657
This theorem is referenced by:  invf  17677  invf1o  17678  invinv  17679  cicsym  17713
  Copyright terms: Public domain W3C validator