Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invsym2 | Structured version Visualization version GIF version |
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
invsym2 | ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | eqid 2740 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invss 17469 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
8 | relxp 5607 | . . . 4 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
9 | relss 5691 | . . . 4 ⊢ ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋))) | |
10 | 7, 8, 9 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel (𝑌𝑁𝑋)) |
11 | relcnv 6010 | . . 3 ⊢ Rel ◡(𝑋𝑁𝑌) | |
12 | 10, 11 | jctil 520 | . 2 ⊢ (𝜑 → (Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋))) |
13 | 1, 2, 3, 5, 4 | invsym 17470 | . . . 4 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ 𝑔(𝑌𝑁𝑋)𝑓)) |
14 | vex 3435 | . . . . . 6 ⊢ 𝑔 ∈ V | |
15 | vex 3435 | . . . . . 6 ⊢ 𝑓 ∈ V | |
16 | 14, 15 | brcnv 5789 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 𝑓(𝑋𝑁𝑌)𝑔) |
17 | df-br 5080 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) | |
18 | 16, 17 | bitr3i 276 | . . . 4 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) |
19 | df-br 5080 | . . . 4 ⊢ (𝑔(𝑌𝑁𝑋)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋)) | |
20 | 13, 18, 19 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → (〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌) ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋))) |
21 | 20 | eqrelrdv2 5703 | . 2 ⊢ (((Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
22 | 12, 21 | mpancom 685 | 1 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 〈cop 4573 class class class wbr 5079 × cxp 5587 ◡ccnv 5588 Rel wrel 5594 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 Hom chom 16969 Catccat 17369 Invcinv 17453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-sect 17455 df-inv 17456 |
This theorem is referenced by: invf 17476 invf1o 17477 invinv 17478 cicsym 17512 |
Copyright terms: Public domain | W3C validator |