| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invsym2 | Structured version Visualization version GIF version | ||
| Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| invsym2 | ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invss 17686 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 8 | relxp 5641 | . . . 4 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 9 | relss 5729 | . . . 4 ⊢ ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel (𝑌𝑁𝑋)) |
| 11 | relcnv 6059 | . . 3 ⊢ Rel ◡(𝑋𝑁𝑌) | |
| 12 | 10, 11 | jctil 519 | . 2 ⊢ (𝜑 → (Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋))) |
| 13 | 1, 2, 3, 5, 4 | invsym 17687 | . . . 4 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ 𝑔(𝑌𝑁𝑋)𝑓)) |
| 14 | vex 3442 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 15 | vex 3442 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 16 | 14, 15 | brcnv 5829 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 𝑓(𝑋𝑁𝑌)𝑔) |
| 17 | df-br 5096 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) | |
| 18 | 16, 17 | bitr3i 277 | . . . 4 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) |
| 19 | df-br 5096 | . . . 4 ⊢ (𝑔(𝑌𝑁𝑋)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋)) | |
| 20 | 13, 18, 19 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → (〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌) ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋))) |
| 21 | 20 | eqrelrdv2 5742 | . 2 ⊢ (((Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 22 | 12, 21 | mpancom 688 | 1 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 × cxp 5621 ◡ccnv 5622 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Catccat 17588 Invcinv 17670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sect 17672 df-inv 17673 |
| This theorem is referenced by: invf 17693 invf1o 17694 invinv 17695 cicsym 17729 |
| Copyright terms: Public domain | W3C validator |