MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym2 Structured version   Visualization version   GIF version

Theorem invsym2 17222
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym2 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))

Proof of Theorem invsym2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.y . . . . 5 (𝜑𝑌𝐵)
5 invfval.x . . . . 5 (𝜑𝑋𝐵)
6 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 17220 . . . 4 (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
8 relxp 5554 . . . 4 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
9 relss 5638 . . . 4 ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋)))
107, 8, 9mpisyl 21 . . 3 (𝜑 → Rel (𝑌𝑁𝑋))
11 relcnv 5952 . . 3 Rel (𝑋𝑁𝑌)
1210, 11jctil 523 . 2 (𝜑 → (Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)))
131, 2, 3, 5, 4invsym 17221 . . . 4 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔𝑔(𝑌𝑁𝑋)𝑓))
14 vex 3402 . . . . . 6 𝑔 ∈ V
15 vex 3402 . . . . . 6 𝑓 ∈ V
1614, 15brcnv 5736 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓𝑓(𝑋𝑁𝑌)𝑔)
17 df-br 5040 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
1816, 17bitr3i 280 . . . 4 (𝑓(𝑋𝑁𝑌)𝑔 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
19 df-br 5040 . . . 4 (𝑔(𝑌𝑁𝑋)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋))
2013, 18, 193bitr3g 316 . . 3 (𝜑 → (⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋)))
2120eqrelrdv2 5650 . 2 (((Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → (𝑋𝑁𝑌) = (𝑌𝑁𝑋))
2212, 21mpancom 688 1 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wss 3853  cop 4533   class class class wbr 5039   × cxp 5534  ccnv 5535  Rel wrel 5541  cfv 6358  (class class class)co 7191  Basecbs 16666  Hom chom 16760  Catccat 17121  Invcinv 17204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-sect 17206  df-inv 17207
This theorem is referenced by:  invf  17227  invf1o  17228  invinv  17229  cicsym  17263
  Copyright terms: Public domain W3C validator