MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym2 Structured version   Visualization version   GIF version

Theorem invsym2 17670
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym2 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))

Proof of Theorem invsym2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invss.y . . . . 5 (𝜑𝑌𝐵)
5 invss.x . . . . 5 (𝜑𝑋𝐵)
6 eqid 2731 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 17668 . . . 4 (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
8 relxp 5634 . . . 4 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
9 relss 5722 . . . 4 ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋)))
107, 8, 9mpisyl 21 . . 3 (𝜑 → Rel (𝑌𝑁𝑋))
11 relcnv 6053 . . 3 Rel (𝑋𝑁𝑌)
1210, 11jctil 519 . 2 (𝜑 → (Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)))
131, 2, 3, 5, 4invsym 17669 . . . 4 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔𝑔(𝑌𝑁𝑋)𝑓))
14 vex 3440 . . . . . 6 𝑔 ∈ V
15 vex 3440 . . . . . 6 𝑓 ∈ V
1614, 15brcnv 5822 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓𝑓(𝑋𝑁𝑌)𝑔)
17 df-br 5092 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
1816, 17bitr3i 277 . . . 4 (𝑓(𝑋𝑁𝑌)𝑔 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
19 df-br 5092 . . . 4 (𝑔(𝑌𝑁𝑋)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋))
2013, 18, 193bitr3g 313 . . 3 (𝜑 → (⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋)))
2120eqrelrdv2 5735 . 2 (((Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → (𝑋𝑁𝑌) = (𝑌𝑁𝑋))
2212, 21mpancom 688 1 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  cop 4582   class class class wbr 5091   × cxp 5614  ccnv 5615  Rel wrel 5621  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  Catccat 17570  Invcinv 17652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-sect 17654  df-inv 17655
This theorem is referenced by:  invf  17675  invf1o  17676  invinv  17677  cicsym  17711
  Copyright terms: Public domain W3C validator