Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdiridlem Structured version   Visualization version   GIF version

Theorem bj-imdiridlem 37151
Description: Lemma for bj-imdirid 37152 and bj-iminvid 37161. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-imdiridlem.1 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
Assertion
Ref Expression
bj-imdiridlem {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-imdiridlem
StepHypRef Expression
1 bj-imdiridlem.1 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
21biimp3a 1469 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝜑) → 𝑥 = 𝑦)
323expib 1122 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴𝜑) → 𝑥 = 𝑦))
4 equcomi 2016 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
54sseq1d 4040 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑦𝐴𝑥𝐴))
65biimparc 479 . . . . . . . 8 ((𝑥𝐴𝑥 = 𝑦) → 𝑦𝐴)
7 simpr 484 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝑦𝐴)
81biimpar 477 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐴) ∧ 𝑥 = 𝑦) → 𝜑)
98an32s 651 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝜑)
107, 9jca 511 . . . . . . . 8 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → (𝑦𝐴𝜑))
116, 10mpdan 686 . . . . . . 7 ((𝑥𝐴𝑥 = 𝑦) → (𝑦𝐴𝜑))
1211ex 412 . . . . . 6 (𝑥𝐴 → (𝑥 = 𝑦 → (𝑦𝐴𝜑)))
133, 12impbid 212 . . . . 5 (𝑥𝐴 → ((𝑦𝐴𝜑) ↔ 𝑥 = 𝑦))
1413pm5.32i 574 . . . 4 ((𝑥𝐴 ∧ (𝑦𝐴𝜑)) ↔ (𝑥𝐴𝑥 = 𝑦))
15 anass 468 . . . 4 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝜑)))
16 velpw 4627 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
17 vex 3492 . . . . . 6 𝑦 ∈ V
1817ideq 5877 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1916, 18anbi12i 627 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦) ↔ (𝑥𝐴𝑥 = 𝑦))
2014, 15, 193bitr4i 303 . . 3 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦))
2120opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
22 dfres2 6070 . 2 ( I ↾ 𝒫 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
2321, 22eqtr4i 2771 1 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622   class class class wbr 5166  {copab 5228   I cid 5592  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-res 5712
This theorem is referenced by:  bj-imdirid  37152  bj-iminvid  37161
  Copyright terms: Public domain W3C validator