Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdiridlem Structured version   Visualization version   GIF version

Theorem bj-imdiridlem 35356
Description: Lemma for bj-imdirid 35357 and bj-iminvid 35366. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-imdiridlem.1 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
Assertion
Ref Expression
bj-imdiridlem {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-imdiridlem
StepHypRef Expression
1 bj-imdiridlem.1 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
21biimp3a 1468 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝜑) → 𝑥 = 𝑦)
323expib 1121 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴𝜑) → 𝑥 = 𝑦))
4 equcomi 2020 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
54sseq1d 3952 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑦𝐴𝑥𝐴))
65biimparc 480 . . . . . . . 8 ((𝑥𝐴𝑥 = 𝑦) → 𝑦𝐴)
7 simpr 485 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝑦𝐴)
81biimpar 478 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐴) ∧ 𝑥 = 𝑦) → 𝜑)
98an32s 649 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝜑)
107, 9jca 512 . . . . . . . 8 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → (𝑦𝐴𝜑))
116, 10mpdan 684 . . . . . . 7 ((𝑥𝐴𝑥 = 𝑦) → (𝑦𝐴𝜑))
1211ex 413 . . . . . 6 (𝑥𝐴 → (𝑥 = 𝑦 → (𝑦𝐴𝜑)))
133, 12impbid 211 . . . . 5 (𝑥𝐴 → ((𝑦𝐴𝜑) ↔ 𝑥 = 𝑦))
1413pm5.32i 575 . . . 4 ((𝑥𝐴 ∧ (𝑦𝐴𝜑)) ↔ (𝑥𝐴𝑥 = 𝑦))
15 anass 469 . . . 4 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝜑)))
16 velpw 4538 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
17 vex 3436 . . . . . 6 𝑦 ∈ V
1817ideq 5761 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1916, 18anbi12i 627 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦) ↔ (𝑥𝐴𝑥 = 𝑦))
2014, 15, 193bitr4i 303 . . 3 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦))
2120opabbii 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
22 dfres2 5949 . 2 ( I ↾ 𝒫 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
2321, 22eqtr4i 2769 1 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  𝒫 cpw 4533   class class class wbr 5074  {copab 5136   I cid 5488  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  bj-imdirid  35357  bj-iminvid  35366
  Copyright terms: Public domain W3C validator