Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdiridlem Structured version   Visualization version   GIF version

Theorem bj-imdiridlem 36697
Description: Lemma for bj-imdirid 36698 and bj-iminvid 36707. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-imdiridlem.1 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
Assertion
Ref Expression
bj-imdiridlem {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-imdiridlem
StepHypRef Expression
1 bj-imdiridlem.1 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝜑𝑥 = 𝑦))
21biimp3a 1465 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝜑) → 𝑥 = 𝑦)
323expib 1119 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴𝜑) → 𝑥 = 𝑦))
4 equcomi 2012 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
54sseq1d 4013 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑦𝐴𝑥𝐴))
65biimparc 478 . . . . . . . 8 ((𝑥𝐴𝑥 = 𝑦) → 𝑦𝐴)
7 simpr 483 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝑦𝐴)
81biimpar 476 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐴) ∧ 𝑥 = 𝑦) → 𝜑)
98an32s 650 . . . . . . . . 9 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → 𝜑)
107, 9jca 510 . . . . . . . 8 (((𝑥𝐴𝑥 = 𝑦) ∧ 𝑦𝐴) → (𝑦𝐴𝜑))
116, 10mpdan 685 . . . . . . 7 ((𝑥𝐴𝑥 = 𝑦) → (𝑦𝐴𝜑))
1211ex 411 . . . . . 6 (𝑥𝐴 → (𝑥 = 𝑦 → (𝑦𝐴𝜑)))
133, 12impbid 211 . . . . 5 (𝑥𝐴 → ((𝑦𝐴𝜑) ↔ 𝑥 = 𝑦))
1413pm5.32i 573 . . . 4 ((𝑥𝐴 ∧ (𝑦𝐴𝜑)) ↔ (𝑥𝐴𝑥 = 𝑦))
15 anass 467 . . . 4 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝜑)))
16 velpw 4611 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
17 vex 3477 . . . . . 6 𝑦 ∈ V
1817ideq 5859 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1916, 18anbi12i 626 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦) ↔ (𝑥𝐴𝑥 = 𝑦))
2014, 15, 193bitr4i 302 . . 3 (((𝑥𝐴𝑦𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦))
2120opabbii 5219 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
22 dfres2 6050 . 2 ( I ↾ 𝒫 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
2321, 22eqtr4i 2759 1 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3949  𝒫 cpw 4606   class class class wbr 5152  {copab 5214   I cid 5579  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-res 5694
This theorem is referenced by:  bj-imdirid  36698  bj-iminvid  36707
  Copyright terms: Public domain W3C validator