MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomatmul Structured version   Visualization version   GIF version

Theorem mpomatmul 21795
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpomatmul.a 𝐴 = (𝑁 Mat 𝑅)
mpomatmul.b 𝐵 = (Base‘𝑅)
mpomatmul.m × = (.r𝐴)
mpomatmul.t · = (.r𝑅)
mpomatmul.r (𝜑𝑅𝑉)
mpomatmul.n (𝜑𝑁 ∈ Fin)
mpomatmul.x 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
mpomatmul.y 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
mpomatmul.c ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
mpomatmul.e ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
mpomatmul.d ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
mpomatmul.f ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
mpomatmul.1 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
mpomatmul.2 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
Assertion
Ref Expression
mpomatmul (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝑋,𝑙,𝑚   𝑘,𝑌,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙,𝑚   · ,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐶(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐷(𝑘,𝑚,𝑙)   · (𝑖,𝑗,𝑚)   × (𝑖,𝑗,𝑘,𝑚,𝑙)   𝑈(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐸(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑘,𝑚,𝑙)   𝑉(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑊(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)

Proof of Theorem mpomatmul
StepHypRef Expression
1 mpomatmul.n . . 3 (𝜑𝑁 ∈ Fin)
2 mpomatmul.r . . 3 (𝜑𝑅𝑉)
3 mpomatmul.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2736 . . . . . . 7 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
53, 4matmulr 21787 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 mpomatmul.m . . . . . 6 × = (.r𝐴)
75, 6eqtr4di 2794 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = × )
87oveqd 7374 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑋 × 𝑌))
98eqcomd 2742 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
101, 2, 9syl2anc 584 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
11 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 mpomatmul.t . . 3 · = (.r𝑅)
13 mpomatmul.x . . . . 5 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
14 eqid 2736 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
15 mpomatmul.c . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
16 mpomatmul.b . . . . . . 7 𝐵 = (Base‘𝑅)
1715, 16eleqtrdi 2848 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶 ∈ (Base‘𝑅))
183, 11, 14, 1, 2, 17matbas2d 21772 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐶) ∈ (Base‘𝐴))
1913, 18eqeltrid 2842 . . . 4 (𝜑𝑋 ∈ (Base‘𝐴))
203, 11matbas2 21770 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
211, 2, 20syl2anc 584 . . . 4 (𝜑 → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2219, 21eleqtrrd 2841 . . 3 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
23 mpomatmul.y . . . . 5 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
24 mpomatmul.e . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
2524, 16eleqtrdi 2848 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸 ∈ (Base‘𝑅))
263, 11, 14, 1, 2, 25matbas2d 21772 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐸) ∈ (Base‘𝐴))
2723, 26eqeltrid 2842 . . . 4 (𝜑𝑌 ∈ (Base‘𝐴))
2827, 21eleqtrrd 2841 . . 3 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 21735 . 2 (𝜑 → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))))
3013a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶))
31 equcom 2021 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
32 equcom 2021 . . . . . . . . . . . . . 14 (𝑗 = 𝑚𝑚 = 𝑗)
3331, 32anbi12i 627 . . . . . . . . . . . . 13 ((𝑖 = 𝑘𝑗 = 𝑚) ↔ (𝑘 = 𝑖𝑚 = 𝑗))
34 mpomatmul.d . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
3533, 34sylan2b 594 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐷 = 𝐶)
3635eqcomd 2742 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
3736ex 413 . . . . . . . . . 10 (𝜑 → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
38373ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
3938adantr 481 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
4039imp 407 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
41 simpl2 1192 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
42 simpr 485 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
43 simpl1 1191 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝜑)
44 mpomatmul.1 . . . . . . . 8 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
4543, 41, 42, 44syl3anc 1371 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐷𝑈)
4630, 40, 41, 42, 45ovmpod 7507 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑋𝑚) = 𝐷)
4723a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸))
48 equcomi 2020 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
49 equcomi 2020 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑙 = 𝑗)
5048, 49anim12i 613 . . . . . . . . . . . . 13 ((𝑖 = 𝑚𝑗 = 𝑙) → (𝑚 = 𝑖𝑙 = 𝑗))
51 mpomatmul.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
5250, 51sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5352ex 413 . . . . . . . . . . 11 (𝜑 → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
54533ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5554adantr 481 . . . . . . . . 9 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5655imp 407 . . . . . . . 8 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5756eqcomd 2742 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐸 = 𝐹)
58 simpl3 1193 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
59 mpomatmul.2 . . . . . . . 8 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
6043, 42, 58, 59syl3anc 1371 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐹𝑊)
6147, 57, 42, 58, 60ovmpod 7507 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑌𝑙) = 𝐹)
6246, 61oveq12d 7375 . . . . 5 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)) = (𝐷 · 𝐹))
6362mpteq2dva 5205 . . . 4 ((𝜑𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))) = (𝑚𝑁 ↦ (𝐷 · 𝐹)))
6463oveq2d 7373 . . 3 ((𝜑𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)))) = (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹))))
6564mpoeq3dva 7434 . 2 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
6610, 29, 653eqtrd 2780 1 (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cotp 4594  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134   Σg cgsu 17322   maMul cmmul 21732   Mat cmat 21754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755
This theorem is referenced by:  mat2pmatmul  22080
  Copyright terms: Public domain W3C validator