MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomatmul Structured version   Visualization version   GIF version

Theorem mpomatmul 21595
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpomatmul.a 𝐴 = (𝑁 Mat 𝑅)
mpomatmul.b 𝐵 = (Base‘𝑅)
mpomatmul.m × = (.r𝐴)
mpomatmul.t · = (.r𝑅)
mpomatmul.r (𝜑𝑅𝑉)
mpomatmul.n (𝜑𝑁 ∈ Fin)
mpomatmul.x 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
mpomatmul.y 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
mpomatmul.c ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
mpomatmul.e ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
mpomatmul.d ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
mpomatmul.f ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
mpomatmul.1 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
mpomatmul.2 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
Assertion
Ref Expression
mpomatmul (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝑋,𝑙,𝑚   𝑘,𝑌,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙,𝑚   · ,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐶(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐷(𝑘,𝑚,𝑙)   · (𝑖,𝑗,𝑚)   × (𝑖,𝑗,𝑘,𝑚,𝑙)   𝑈(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐸(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑘,𝑚,𝑙)   𝑉(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑊(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)

Proof of Theorem mpomatmul
StepHypRef Expression
1 mpomatmul.n . . 3 (𝜑𝑁 ∈ Fin)
2 mpomatmul.r . . 3 (𝜑𝑅𝑉)
3 mpomatmul.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2738 . . . . . . 7 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
53, 4matmulr 21587 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 mpomatmul.m . . . . . 6 × = (.r𝐴)
75, 6eqtr4di 2796 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = × )
87oveqd 7292 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑋 × 𝑌))
98eqcomd 2744 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
101, 2, 9syl2anc 584 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
11 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 mpomatmul.t . . 3 · = (.r𝑅)
13 mpomatmul.x . . . . 5 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
14 eqid 2738 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
15 mpomatmul.c . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
16 mpomatmul.b . . . . . . 7 𝐵 = (Base‘𝑅)
1715, 16eleqtrdi 2849 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶 ∈ (Base‘𝑅))
183, 11, 14, 1, 2, 17matbas2d 21572 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐶) ∈ (Base‘𝐴))
1913, 18eqeltrid 2843 . . . 4 (𝜑𝑋 ∈ (Base‘𝐴))
203, 11matbas2 21570 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
211, 2, 20syl2anc 584 . . . 4 (𝜑 → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2219, 21eleqtrrd 2842 . . 3 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
23 mpomatmul.y . . . . 5 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
24 mpomatmul.e . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
2524, 16eleqtrdi 2849 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸 ∈ (Base‘𝑅))
263, 11, 14, 1, 2, 25matbas2d 21572 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐸) ∈ (Base‘𝐴))
2723, 26eqeltrid 2843 . . . 4 (𝜑𝑌 ∈ (Base‘𝐴))
2827, 21eleqtrrd 2842 . . 3 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 21535 . 2 (𝜑 → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))))
3013a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶))
31 equcom 2021 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
32 equcom 2021 . . . . . . . . . . . . . 14 (𝑗 = 𝑚𝑚 = 𝑗)
3331, 32anbi12i 627 . . . . . . . . . . . . 13 ((𝑖 = 𝑘𝑗 = 𝑚) ↔ (𝑘 = 𝑖𝑚 = 𝑗))
34 mpomatmul.d . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
3533, 34sylan2b 594 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐷 = 𝐶)
3635eqcomd 2744 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
3736ex 413 . . . . . . . . . 10 (𝜑 → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
38373ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
3938adantr 481 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
4039imp 407 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
41 simpl2 1191 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
42 simpr 485 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
43 simpl1 1190 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝜑)
44 mpomatmul.1 . . . . . . . 8 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
4543, 41, 42, 44syl3anc 1370 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐷𝑈)
4630, 40, 41, 42, 45ovmpod 7425 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑋𝑚) = 𝐷)
4723a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸))
48 equcomi 2020 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
49 equcomi 2020 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑙 = 𝑗)
5048, 49anim12i 613 . . . . . . . . . . . . 13 ((𝑖 = 𝑚𝑗 = 𝑙) → (𝑚 = 𝑖𝑙 = 𝑗))
51 mpomatmul.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
5250, 51sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5352ex 413 . . . . . . . . . . 11 (𝜑 → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
54533ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5554adantr 481 . . . . . . . . 9 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5655imp 407 . . . . . . . 8 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5756eqcomd 2744 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐸 = 𝐹)
58 simpl3 1192 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
59 mpomatmul.2 . . . . . . . 8 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
6043, 42, 58, 59syl3anc 1370 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐹𝑊)
6147, 57, 42, 58, 60ovmpod 7425 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑌𝑙) = 𝐹)
6246, 61oveq12d 7293 . . . . 5 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)) = (𝐷 · 𝐹))
6362mpteq2dva 5174 . . . 4 ((𝜑𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))) = (𝑚𝑁 ↦ (𝐷 · 𝐹)))
6463oveq2d 7291 . . 3 ((𝜑𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)))) = (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹))))
6564mpoeq3dva 7352 . 2 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
6610, 29, 653eqtrd 2782 1 (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cotp 4569  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151   maMul cmmul 21532   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mamu 21533  df-mat 21555
This theorem is referenced by:  mat2pmatmul  21880
  Copyright terms: Public domain W3C validator