| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr4d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvreltr4d.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvreltr4d.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| eqvreltr4d.3 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvreltr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreltr4d.1 | . 2 ⊢ (𝜑 → EqvRel 𝑅) | |
| 2 | eqvreltr4d.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 3 | eqvreltr4d.3 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 4 | 1, 3 | eqvrelsym 38602 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
| 5 | 1, 2, 4 | eqvreltrd 38605 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5092 EqvRel weqvrel 38192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-refrel 38509 df-symrel 38541 df-trrel 38571 df-eqvrel 38582 |
| This theorem is referenced by: eqvrelref 38607 eqvreldisj 38611 |
| Copyright terms: Public domain | W3C validator |