![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr4d | Structured version Visualization version GIF version |
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvreltr4d.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvreltr4d.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
eqvreltr4d.3 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
eqvreltr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreltr4d.1 | . 2 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvreltr4d.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | eqvreltr4d.3 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
4 | 1, 3 | eqvrelsym 38587 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
5 | 1, 2, 4 | eqvreltrd 38590 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5148 EqvRel weqvrel 38179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-refrel 38494 df-symrel 38526 df-trrel 38556 df-eqvrel 38567 |
This theorem is referenced by: eqvrelref 38592 eqvreldisj 38596 |
Copyright terms: Public domain | W3C validator |