| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr4d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvreltr4d.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvreltr4d.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| eqvreltr4d.3 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvreltr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreltr4d.1 | . 2 ⊢ (𝜑 → EqvRel 𝑅) | |
| 2 | eqvreltr4d.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 3 | eqvreltr4d.3 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 4 | 1, 3 | eqvrelsym 38569 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
| 5 | 1, 2, 4 | eqvreltrd 38572 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5102 EqvRel weqvrel 38159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-refrel 38476 df-symrel 38508 df-trrel 38538 df-eqvrel 38549 |
| This theorem is referenced by: eqvrelref 38574 eqvreldisj 38578 |
| Copyright terms: Public domain | W3C validator |