Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreltr4d Structured version   Visualization version   GIF version

Theorem eqvreltr4d 38600
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvreltr4d.1 (𝜑 → EqvRel 𝑅)
eqvreltr4d.2 (𝜑𝐴𝑅𝐵)
eqvreltr4d.3 (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
eqvreltr4d (𝜑𝐴𝑅𝐶)

Proof of Theorem eqvreltr4d
StepHypRef Expression
1 eqvreltr4d.1 . 2 (𝜑 → EqvRel 𝑅)
2 eqvreltr4d.2 . 2 (𝜑𝐴𝑅𝐵)
3 eqvreltr4d.3 . . 3 (𝜑𝐶𝑅𝐵)
41, 3eqvrelsym 38596 . 2 (𝜑𝐵𝑅𝐶)
51, 2, 4eqvreltrd 38599 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5107   EqvRel weqvrel 38186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 38503  df-symrel 38535  df-trrel 38565  df-eqvrel 38576
This theorem is referenced by:  eqvrelref  38601  eqvreldisj  38605
  Copyright terms: Public domain W3C validator