Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj Structured version   Visualization version   GIF version

Theorem eqvreldisj 37997
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Assertion
Ref Expression
eqvreldisj ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem eqvreldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4340 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 482 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → EqvRel 𝑅)
3 elinel1 4190 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
43adantl 481 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
5 ecexr 8710 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
64, 5syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
7 vex 3472 . . . . . . . . . 10 𝑥 ∈ V
8 elecALTV 37647 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
96, 7, 8sylancl 585 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
104, 9mpbid 231 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
11 elinel2 4191 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1211adantl 481 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
13 ecexr 8710 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1412, 13syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
15 elecALTV 37647 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1614, 7, 15sylancl 585 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1712, 16mpbid 231 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
182, 10, 17eqvreltr4d 37992 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
192, 18eqvrelthi 37996 . . . . . 6 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2019ex 412 . . . . 5 ( EqvRel 𝑅 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2120exlimdv 1928 . . . 4 ( EqvRel 𝑅 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
221, 21biimtrid 241 . . 3 ( EqvRel 𝑅 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2322orrd 860 . 2 ( EqvRel 𝑅 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2423orcomd 868 1 ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wex 1773  wcel 2098  Vcvv 3468  cin 3942  c0 4317   class class class wbr 5141  [cec 8703   EqvRel weqvrel 37573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ec 8707  df-refrel 37895  df-symrel 37927  df-trrel 37957  df-eqvrel 37968
This theorem is referenced by:  qsdisjALTV  37998
  Copyright terms: Public domain W3C validator