Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj Structured version   Visualization version   GIF version

Theorem eqvreldisj 36727
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Assertion
Ref Expression
eqvreldisj ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem eqvreldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4279 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 483 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → EqvRel 𝑅)
3 elinel1 4129 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
43adantl 482 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
5 ecexr 8503 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
64, 5syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
7 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
8 elecALTV 36405 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
96, 7, 8sylancl 586 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
104, 9mpbid 231 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
11 elinel2 4130 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1211adantl 482 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
13 ecexr 8503 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1412, 13syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
15 elecALTV 36405 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1614, 7, 15sylancl 586 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1712, 16mpbid 231 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
182, 10, 17eqvreltr4d 36722 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
192, 18eqvrelthi 36726 . . . . . 6 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2019ex 413 . . . . 5 ( EqvRel 𝑅 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2120exlimdv 1936 . . . 4 ( EqvRel 𝑅 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
221, 21syl5bi 241 . . 3 ( EqvRel 𝑅 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2322orrd 860 . 2 ( EqvRel 𝑅 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2423orcomd 868 1 ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cin 3886  c0 4256   class class class wbr 5074  [cec 8496   EqvRel weqvrel 36350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-refrel 36630  df-symrel 36658  df-trrel 36688  df-eqvrel 36698
This theorem is referenced by:  qsdisjALTV  36728
  Copyright terms: Public domain W3C validator