Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj Structured version   Visualization version   GIF version

Theorem eqvreldisj 36009
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Assertion
Ref Expression
eqvreldisj ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem eqvreldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4259 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 486 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → EqvRel 𝑅)
3 elinel1 4122 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
43adantl 485 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
5 ecexr 8277 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
64, 5syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
7 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
8 elecALTV 35687 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
96, 7, 8sylancl 589 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
104, 9mpbid 235 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
11 elinel2 4123 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1211adantl 485 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
13 ecexr 8277 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1412, 13syl 17 . . . . . . . . . 10 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
15 elecALTV 35687 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1614, 7, 15sylancl 589 . . . . . . . . 9 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1712, 16mpbid 235 . . . . . . . 8 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
182, 10, 17eqvreltr4d 36004 . . . . . . 7 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
192, 18eqvrelthi 36008 . . . . . 6 (( EqvRel 𝑅𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2019ex 416 . . . . 5 ( EqvRel 𝑅 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2120exlimdv 1934 . . . 4 ( EqvRel 𝑅 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
221, 21syl5bi 245 . . 3 ( EqvRel 𝑅 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2322orrd 860 . 2 ( EqvRel 𝑅 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2423orcomd 868 1 ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cin 3880  c0 4243   class class class wbr 5030  [cec 8270   EqvRel weqvrel 35630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ec 8274  df-refrel 35912  df-symrel 35940  df-trrel 35970  df-eqvrel 35980
This theorem is referenced by:  qsdisjALTV  36010
  Copyright terms: Public domain W3C validator