MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercl2 Structured version   Visualization version   GIF version

Theorem ercl2 8635
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl2 (𝜑𝐵𝑋)

Proof of Theorem ercl2
StepHypRef Expression
1 ersym.1 . 2 (𝜑𝑅 Er 𝑋)
2 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
31, 2ersym 8634 . 2 (𝜑𝐵𝑅𝐴)
41, 3ercl 8633 1 (𝜑𝐵𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5089   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-er 8622
This theorem is referenced by:  qliftfun  8726  efgcpbl2  19669  frgpcpbl  19671  prjspner1  42667
  Copyright terms: Public domain W3C validator