MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercl2 Structured version   Visualization version   GIF version

Theorem ercl2 8687
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl2 (𝜑𝐵𝑋)

Proof of Theorem ercl2
StepHypRef Expression
1 ersym.1 . 2 (𝜑𝑅 Er 𝑋)
2 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
31, 2ersym 8686 . 2 (𝜑𝐵𝑅𝐴)
41, 3ercl 8685 1 (𝜑𝐵𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110   Er wer 8671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-er 8674
This theorem is referenced by:  qliftfun  8778  efgcpbl2  19694  frgpcpbl  19696  prjspner1  42621
  Copyright terms: Public domain W3C validator