![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftfun | Structured version Visualization version GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
qliftfun.4 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
qliftfun | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | qliftlem 8794 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | eceq1 8743 | . . 3 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | qliftfun.4 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
8 | 1, 5, 2, 6, 7 | fliftfun 7311 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) |
9 | 3 | adantr 479 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑅 Er 𝑋) |
10 | simpr 483 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦) | |
11 | 9, 10 | ercl 8716 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝑋) |
12 | 9, 10 | ercl2 8718 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦 ∈ 𝑋) |
13 | 11, 12 | jca 510 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
14 | 13 | ex 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
15 | 14 | pm4.71rd 561 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑅𝑦))) |
16 | 3 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 Er 𝑋) |
17 | simprl 767 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | |
18 | 16, 17 | erth 8754 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅)) |
19 | 18 | pm5.32da 577 | . . . . . . 7 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅))) |
20 | 15, 19 | bitrd 278 | . . . . . 6 ⊢ (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅))) |
21 | 20 | imbi1d 340 | . . . . 5 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵))) |
22 | impexp 449 | . . . . 5 ⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) | |
23 | 21, 22 | bitrdi 286 | . . . 4 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵)))) |
24 | 23 | 2albidv 1924 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵)))) |
25 | r2al 3192 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) | |
26 | 24, 25 | bitr4di 288 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) |
27 | 8, 26 | bitr4d 281 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ⟨cop 4633 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 Fun wfun 6536 Er wer 8702 [cec 8703 / cqs 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-er 8705 df-ec 8707 df-qs 8711 |
This theorem is referenced by: qliftfund 8799 qliftfuns 8800 |
Copyright terms: Public domain | W3C validator |