MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftfun Structured version   Visualization version   GIF version

Theorem qliftfun 8591
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
qliftfun.4 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
qliftfun (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8587 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 8536 . . 3 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 qliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
81, 5, 2, 6, 7fliftfun 7183 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
93adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑅 Er 𝑋)
10 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑥𝑅𝑦)
119, 10ercl 8509 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑥𝑋)
129, 10ercl2 8511 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑦𝑋)
1311, 12jca 512 . . . . . . . . 9 ((𝜑𝑥𝑅𝑦) → (𝑥𝑋𝑦𝑋))
1413ex 413 . . . . . . . 8 (𝜑 → (𝑥𝑅𝑦 → (𝑥𝑋𝑦𝑋)))
1514pm4.71rd 563 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦)))
163adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 Er 𝑋)
17 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1816, 17erth 8547 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
1918pm5.32da 579 . . . . . . 7 (𝜑 → (((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2015, 19bitrd 278 . . . . . 6 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2120imbi1d 342 . . . . 5 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ (((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵)))
22 impexp 451 . . . . 5 ((((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2321, 22bitrdi 287 . . . 4 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
24232albidv 1926 . . 3 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
25 r2al 3118 . . 3 (∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2624, 25bitr4di 289 . 2 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
278, 26bitr4d 281 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074  cmpt 5157  ran crn 5590  Fun wfun 6427   Er wer 8495  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-er 8498  df-ec 8500  df-qs 8504
This theorem is referenced by:  qliftfund  8592  qliftfuns  8593
  Copyright terms: Public domain W3C validator