![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftfun | Structured version Visualization version GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
qliftfun.4 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
qliftfun | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | qliftlem 8795 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | eceq1 8744 | . . 3 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | qliftfun.4 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
8 | 1, 5, 2, 6, 7 | fliftfun 7312 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) |
9 | 3 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑅 Er 𝑋) |
10 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦) | |
11 | 9, 10 | ercl 8717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝑋) |
12 | 9, 10 | ercl2 8719 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦 ∈ 𝑋) |
13 | 11, 12 | jca 511 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
14 | 13 | ex 412 | . . . . . . . 8 ⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
15 | 14 | pm4.71rd 562 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑅𝑦))) |
16 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 Er 𝑋) |
17 | simprl 768 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | |
18 | 16, 17 | erth 8755 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅)) |
19 | 18 | pm5.32da 578 | . . . . . . 7 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅))) |
20 | 15, 19 | bitrd 279 | . . . . . 6 ⊢ (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅))) |
21 | 20 | imbi1d 341 | . . . . 5 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵))) |
22 | impexp 450 | . . . . 5 ⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) | |
23 | 21, 22 | bitrdi 287 | . . . 4 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵)))) |
24 | 23 | 2albidv 1925 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵)))) |
25 | r2al 3193 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) | |
26 | 24, 25 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ([𝑥]𝑅 = [𝑦]𝑅 → 𝐴 = 𝐵))) |
27 | 8, 26 | bitr4d 282 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⟨cop 4634 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 Fun wfun 6537 Er wer 8703 [cec 8704 / cqs 8705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-er 8706 df-ec 8708 df-qs 8712 |
This theorem is referenced by: qliftfund 8800 qliftfuns 8801 |
Copyright terms: Public domain | W3C validator |