Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ ( I
‘Word (𝐼 ×
2o)) = ( I ‘Word (𝐼 × 2o)) |
2 | | frgpval.r |
. . 3
⊢ ∼ = (
~FG ‘𝐼) |
3 | | eqid 2738 |
. . 3
⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | eqid 2738 |
. . 3
⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) |
5 | | eqid 2738 |
. . 3
⊢ (( I
‘Word (𝐼 ×
2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖
∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) |
6 | | eqid 2738 |
. . 3
⊢ (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖
{∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖
∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖
{∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖
∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦
(𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgcpbl2 19278 |
. 2
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 ++ 𝐵) ∼ (𝐶 ++ 𝐷)) |
8 | 1, 2 | efger 19239 |
. . . . . 6
⊢ ∼ Er ( I
‘Word (𝐼 ×
2o)) |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → ∼ Er ( I ‘Word
(𝐼 ×
2o))) |
10 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐴 ∼ 𝐶) |
11 | 9, 10 | ercl 8467 |
. . . 4
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐴 ∈ ( I ‘Word (𝐼 × 2o))) |
12 | 1 | efgrcl 19236 |
. . . . . . 7
⊢ (𝐴 ∈ ( I ‘Word (𝐼 × 2o)) →
(𝐼 ∈ V ∧ ( I
‘Word (𝐼 ×
2o)) = Word (𝐼
× 2o))) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2o)) = Word
(𝐼 ×
2o))) |
14 | 13 | simprd 495 |
. . . . 5
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 ×
2o)) |
15 | 13 | simpld 494 |
. . . . . . 7
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐼 ∈ V) |
16 | | 2on 8275 |
. . . . . . 7
⊢
2o ∈ On |
17 | | xpexg 7578 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ 2o
∈ On) → (𝐼
× 2o) ∈ V) |
18 | 15, 16, 17 | sylancl 585 |
. . . . . 6
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐼 × 2o) ∈
V) |
19 | | frgpval.b |
. . . . . . 7
⊢ 𝑀 = (freeMnd‘(𝐼 ×
2o)) |
20 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑀) =
(Base‘𝑀) |
21 | 19, 20 | frmdbas 18406 |
. . . . . 6
⊢ ((𝐼 × 2o) ∈ V
→ (Base‘𝑀) =
Word (𝐼 ×
2o)) |
22 | 18, 21 | syl 17 |
. . . . 5
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (Base‘𝑀) = Word (𝐼 × 2o)) |
23 | 14, 22 | eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → ( I ‘Word (𝐼 × 2o)) = (Base‘𝑀)) |
24 | 11, 23 | eleqtrd 2841 |
. . 3
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐴 ∈ (Base‘𝑀)) |
25 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐵 ∼ 𝐷) |
26 | 9, 25 | ercl 8467 |
. . . 4
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐵 ∈ ( I ‘Word (𝐼 × 2o))) |
27 | 26, 23 | eleqtrd 2841 |
. . 3
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐵 ∈ (Base‘𝑀)) |
28 | | frgpcpbl.p |
. . . 4
⊢ + =
(+g‘𝑀) |
29 | 19, 20, 28 | frmdadd 18409 |
. . 3
⊢ ((𝐴 ∈ (Base‘𝑀) ∧ 𝐵 ∈ (Base‘𝑀)) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵)) |
30 | 24, 27, 29 | syl2anc 583 |
. 2
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵)) |
31 | 9, 10 | ercl2 8469 |
. . . 4
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐶 ∈ ( I ‘Word (𝐼 × 2o))) |
32 | 31, 23 | eleqtrd 2841 |
. . 3
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐶 ∈ (Base‘𝑀)) |
33 | 9, 25 | ercl2 8469 |
. . . 4
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐷 ∈ ( I ‘Word (𝐼 × 2o))) |
34 | 33, 23 | eleqtrd 2841 |
. . 3
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → 𝐷 ∈ (Base‘𝑀)) |
35 | 19, 20, 28 | frmdadd 18409 |
. . 3
⊢ ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷)) |
36 | 32, 34, 35 | syl2anc 583 |
. 2
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷)) |
37 | 7, 30, 36 | 3brtr4d 5102 |
1
⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷)) |