MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcpbl Structured version   Visualization version   GIF version

Theorem frgpcpbl 19681
Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrp‘𝐼)
frgpval.b 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpval.r = ( ~FG𝐼)
frgpcpbl.p + = (+g𝑀)
Assertion
Ref Expression
frgpcpbl ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))

Proof of Theorem frgpcpbl
Dummy variables 𝑘 𝑚 𝑛 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
2 frgpval.r . . 3 = ( ~FG𝐼)
3 eqid 2733 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 eqid 2733 . . 3 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
5 eqid 2733 . . 3 (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
6 eqid 2733 . . 3 (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgcpbl2 19679 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 ++ 𝐵) (𝐶 ++ 𝐷))
81, 2efger 19640 . . . . . 6 Er ( I ‘Word (𝐼 × 2o))
98a1i 11 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → Er ( I ‘Word (𝐼 × 2o)))
10 simpl 482 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐴 𝐶)
119, 10ercl 8642 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ ( I ‘Word (𝐼 × 2o)))
121efgrcl 19637 . . . . . . 7 (𝐴 ∈ ( I ‘Word (𝐼 × 2o)) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)))
1311, 12syl 17 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)))
1413simprd 495 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1513simpld 494 . . . . . . 7 ((𝐴 𝐶𝐵 𝐷) → 𝐼 ∈ V)
16 2on 8407 . . . . . . 7 2o ∈ On
17 xpexg 7692 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1815, 16, 17sylancl 586 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 × 2o) ∈ V)
19 frgpval.b . . . . . . 7 𝑀 = (freeMnd‘(𝐼 × 2o))
20 eqid 2733 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
2119, 20frmdbas 18770 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘𝑀) = Word (𝐼 × 2o))
2218, 21syl 17 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → (Base‘𝑀) = Word (𝐼 × 2o))
2314, 22eqtr4d 2771 . . . 4 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2o)) = (Base‘𝑀))
2411, 23eleqtrd 2835 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ (Base‘𝑀))
25 simpr 484 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐵 𝐷)
269, 25ercl 8642 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ ( I ‘Word (𝐼 × 2o)))
2726, 23eleqtrd 2835 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ (Base‘𝑀))
28 frgpcpbl.p . . . 4 + = (+g𝑀)
2919, 20, 28frmdadd 18773 . . 3 ((𝐴 ∈ (Base‘𝑀) ∧ 𝐵 ∈ (Base‘𝑀)) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
3024, 27, 29syl2anc 584 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
319, 10ercl2 8644 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ ( I ‘Word (𝐼 × 2o)))
3231, 23eleqtrd 2835 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ (Base‘𝑀))
339, 25ercl2 8644 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ ( I ‘Word (𝐼 × 2o)))
3433, 23eleqtrd 2835 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ (Base‘𝑀))
3519, 20, 28frmdadd 18773 . . 3 ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
3632, 34, 35syl2anc 584 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
377, 30, 363brtr4d 5127 1 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  {crab 3397  Vcvv 3438  cdif 3896  c0 4284  {csn 4577  cop 4583  cotp 4585   ciun 4943   class class class wbr 5095  cmpt 5176   I cid 5515   × cxp 5619  ran crn 5622  Oncon0 6314  cfv 6489  (class class class)co 7355  cmpo 7357  1oc1o 8387  2oc2o 8388   Er wer 8628  0cc0 11016  1c1 11017  cmin 11354  ...cfz 13417  ..^cfzo 13564  chash 14247  Word cword 14430   ++ cconcat 14487   splice csplice 14666  ⟨“cs2 14758  Basecbs 17130  +gcplusg 17171  freeMndcfrmd 18765   ~FG cefg 19628  freeGrpcfrgp 19629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-ec 8633  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-substr 14559  df-pfx 14589  df-splice 14667  df-s2 14765  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-frmd 18767  df-efg 19631
This theorem is referenced by:  frgp0  19682  frgpadd  19685
  Copyright terms: Public domain W3C validator