Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcpbl Structured version   Visualization version   GIF version

Theorem frgpcpbl 18885
 Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrp‘𝐼)
frgpval.b 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpval.r = ( ~FG𝐼)
frgpcpbl.p + = (+g𝑀)
Assertion
Ref Expression
frgpcpbl ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))

Proof of Theorem frgpcpbl
Dummy variables 𝑘 𝑚 𝑛 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
2 frgpval.r . . 3 = ( ~FG𝐼)
3 eqid 2824 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 eqid 2824 . . 3 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
5 eqid 2824 . . 3 (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
6 eqid 2824 . . 3 (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2o)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgcpbl2 18883 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 ++ 𝐵) (𝐶 ++ 𝐷))
81, 2efger 18844 . . . . . 6 Er ( I ‘Word (𝐼 × 2o))
98a1i 11 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → Er ( I ‘Word (𝐼 × 2o)))
10 simpl 486 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐴 𝐶)
119, 10ercl 8296 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ ( I ‘Word (𝐼 × 2o)))
121efgrcl 18841 . . . . . . 7 (𝐴 ∈ ( I ‘Word (𝐼 × 2o)) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)))
1311, 12syl 17 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)))
1413simprd 499 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1513simpld 498 . . . . . . 7 ((𝐴 𝐶𝐵 𝐷) → 𝐼 ∈ V)
16 2on 8107 . . . . . . 7 2o ∈ On
17 xpexg 7467 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1815, 16, 17sylancl 589 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 × 2o) ∈ V)
19 frgpval.b . . . . . . 7 𝑀 = (freeMnd‘(𝐼 × 2o))
20 eqid 2824 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
2119, 20frmdbas 18017 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘𝑀) = Word (𝐼 × 2o))
2218, 21syl 17 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → (Base‘𝑀) = Word (𝐼 × 2o))
2314, 22eqtr4d 2862 . . . 4 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2o)) = (Base‘𝑀))
2411, 23eleqtrd 2918 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ (Base‘𝑀))
25 simpr 488 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐵 𝐷)
269, 25ercl 8296 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ ( I ‘Word (𝐼 × 2o)))
2726, 23eleqtrd 2918 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ (Base‘𝑀))
28 frgpcpbl.p . . . 4 + = (+g𝑀)
2919, 20, 28frmdadd 18020 . . 3 ((𝐴 ∈ (Base‘𝑀) ∧ 𝐵 ∈ (Base‘𝑀)) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
3024, 27, 29syl2anc 587 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
319, 10ercl2 8298 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ ( I ‘Word (𝐼 × 2o)))
3231, 23eleqtrd 2918 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ (Base‘𝑀))
339, 25ercl2 8298 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ ( I ‘Word (𝐼 × 2o)))
3433, 23eleqtrd 2918 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ (Base‘𝑀))
3519, 20, 28frmdadd 18020 . . 3 ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
3632, 34, 35syl2anc 587 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
377, 30, 363brtr4d 5084 1 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  {crab 3137  Vcvv 3480   ∖ cdif 3916  ∅c0 4276  {csn 4550  ⟨cop 4556  ⟨cotp 4558  ∪ ciun 4905   class class class wbr 5052   ↦ cmpt 5132   I cid 5446   × cxp 5540  ran crn 5543  Oncon0 6178  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  1oc1o 8091  2oc2o 8092   Er wer 8282  0cc0 10535  1c1 10536   − cmin 10868  ...cfz 12894  ..^cfzo 13037  ♯chash 13695  Word cword 13866   ++ cconcat 13922   splice csplice 14111  ⟨“cs2 14203  Basecbs 16483  +gcplusg 16565  freeMndcfrmd 18012   ~FG cefg 18832  freeGrpcfrgp 18833 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-ot 4559  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-ec 8287  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-frmd 18014  df-efg 18835 This theorem is referenced by:  frgp0  18886  frgpadd  18889
 Copyright terms: Public domain W3C validator