| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgcpbl2 | Structured version Visualization version GIF version | ||
| Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgcpbl2 | ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | 1, 2 | efger 19615 | . . 3 ⊢ ∼ Er 𝑊 |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∼ Er 𝑊) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∼ 𝑋) | |
| 6 | 4, 5 | ercl 8643 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ 𝑊) |
| 7 | wrd0 14464 | . . . . 5 ⊢ ∅ ∈ Word (𝐼 × 2o) | |
| 8 | 1 | efgrcl 19612 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 10 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑊 = Word (𝐼 × 2o)) |
| 11 | 7, 10 | eleqtrrid 2835 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∅ ∈ 𝑊) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∼ 𝑌) | |
| 13 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 14 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 15 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 16 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 17 | 1, 2, 13, 14, 15, 16 | efgcpbl 19653 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
| 18 | 6, 11, 12, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
| 19 | 6, 10 | eleqtrd 2830 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ Word (𝐼 × 2o)) |
| 20 | 4, 12 | ercl 8643 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ 𝑊) |
| 21 | 20, 10 | eleqtrd 2830 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ Word (𝐼 × 2o)) |
| 22 | ccatcl 14499 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝐵 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) | |
| 23 | 19, 21, 22 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) |
| 24 | ccatrid 14512 | . . . 4 ⊢ ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) |
| 26 | 4, 12 | ercl2 8645 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ 𝑊) |
| 27 | 26, 10 | eleqtrd 2830 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ Word (𝐼 × 2o)) |
| 28 | ccatcl 14499 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝑌 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) | |
| 29 | 19, 27, 28 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) |
| 30 | ccatrid 14512 | . . . 4 ⊢ ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) |
| 32 | 18, 25, 31 | 3brtr3d 5126 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝐴 ++ 𝑌)) |
| 33 | 1, 2, 13, 14, 15, 16 | efgcpbl 19653 | . . . 4 ⊢ ((∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
| 34 | 11, 26, 5, 33 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
| 35 | ccatlid 14511 | . . . . 5 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (∅ ++ 𝐴) = 𝐴) | |
| 36 | 19, 35 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝐴) = 𝐴) |
| 37 | 36 | oveq1d 7368 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌)) |
| 38 | 4, 5 | ercl2 8645 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ 𝑊) |
| 39 | 38, 10 | eleqtrd 2830 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ Word (𝐼 × 2o)) |
| 40 | ccatlid 14511 | . . . . 5 ⊢ (𝑋 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑋) = 𝑋) | |
| 41 | 39, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝑋) = 𝑋) |
| 42 | 41 | oveq1d 7368 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌)) |
| 43 | 34, 37, 42 | 3brtr3d 5126 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∼ (𝑋 ++ 𝑌)) |
| 44 | 4, 32, 43 | ertrd 8648 | 1 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 {csn 4579 〈cop 4585 〈cotp 4587 ∪ ciun 4944 class class class wbr 5095 ↦ cmpt 5176 I cid 5517 × cxp 5621 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1oc1o 8388 2oc2o 8389 Er wer 8629 0cc0 11028 1c1 11029 − cmin 11365 ...cfz 13428 ..^cfzo 13575 ♯chash 14255 Word cword 14438 ++ cconcat 14495 splice csplice 14673 〈“cs2 14766 ~FG cefg 19603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-ec 8634 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-s2 14773 df-efg 19606 |
| This theorem is referenced by: frgpcpbl 19656 |
| Copyright terms: Public domain | W3C validator |