Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgcpbl2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgcpbl2 | ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | 1, 2 | efger 18925 | . . 3 ⊢ ∼ Er 𝑊 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∼ Er 𝑊) |
5 | simpl 486 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∼ 𝑋) | |
6 | 4, 5 | ercl 8316 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ 𝑊) |
7 | wrd0 13951 | . . . . 5 ⊢ ∅ ∈ Word (𝐼 × 2o) | |
8 | 1 | efgrcl 18922 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
10 | 9 | simprd 499 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑊 = Word (𝐼 × 2o)) |
11 | 7, 10 | eleqtrrid 2859 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∅ ∈ 𝑊) |
12 | simpr 488 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∼ 𝑌) | |
13 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
14 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
15 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
16 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
17 | 1, 2, 13, 14, 15, 16 | efgcpbl 18963 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
18 | 6, 11, 12, 17 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
19 | 6, 10 | eleqtrd 2854 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ Word (𝐼 × 2o)) |
20 | 4, 12 | ercl 8316 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ 𝑊) |
21 | 20, 10 | eleqtrd 2854 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ Word (𝐼 × 2o)) |
22 | ccatcl 13986 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝐵 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) | |
23 | 19, 21, 22 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) |
24 | ccatrid 14001 | . . . 4 ⊢ ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) |
26 | 4, 12 | ercl2 8318 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ 𝑊) |
27 | 26, 10 | eleqtrd 2854 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ Word (𝐼 × 2o)) |
28 | ccatcl 13986 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝑌 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) | |
29 | 19, 27, 28 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) |
30 | ccatrid 14001 | . . . 4 ⊢ ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) |
32 | 18, 25, 31 | 3brtr3d 5067 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝐴 ++ 𝑌)) |
33 | 1, 2, 13, 14, 15, 16 | efgcpbl 18963 | . . . 4 ⊢ ((∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
34 | 11, 26, 5, 33 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
35 | ccatlid 14000 | . . . . 5 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (∅ ++ 𝐴) = 𝐴) | |
36 | 19, 35 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝐴) = 𝐴) |
37 | 36 | oveq1d 7171 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌)) |
38 | 4, 5 | ercl2 8318 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ 𝑊) |
39 | 38, 10 | eleqtrd 2854 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ Word (𝐼 × 2o)) |
40 | ccatlid 14000 | . . . . 5 ⊢ (𝑋 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑋) = 𝑋) | |
41 | 39, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝑋) = 𝑋) |
42 | 41 | oveq1d 7171 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌)) |
43 | 34, 37, 42 | 3brtr3d 5067 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∼ (𝑋 ++ 𝑌)) |
44 | 4, 32, 43 | ertrd 8321 | 1 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 ∖ cdif 3857 ∅c0 4227 {csn 4525 〈cop 4531 〈cotp 4533 ∪ ciun 4886 class class class wbr 5036 ↦ cmpt 5116 I cid 5433 × cxp 5526 ran crn 5529 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 1oc1o 8111 2oc2o 8112 Er wer 8302 0cc0 10588 1c1 10589 − cmin 10921 ...cfz 12952 ..^cfzo 13095 ♯chash 13753 Word cword 13926 ++ cconcat 13982 splice csplice 14171 〈“cs2 14263 ~FG cefg 18913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-ec 8307 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 df-s1 14010 df-substr 14063 df-pfx 14093 df-splice 14172 df-s2 14270 df-efg 18916 |
This theorem is referenced by: frgpcpbl 18966 |
Copyright terms: Public domain | W3C validator |