MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl2 Structured version   Visualization version   GIF version

Theorem efgcpbl2 19677
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgcpbl2 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ 𝐡) ∼ (𝑋 ++ π‘Œ))
Distinct variable groups:   𝑦,𝑧   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,π‘š,π‘₯   π‘š,𝑀   π‘₯,𝑛,𝑀,𝑑,𝑣,𝑀   π‘˜,π‘š,𝑑,π‘₯,𝑇   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘š,𝑑,π‘₯,𝑦,𝑧   π‘š,𝐼,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘š,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐡(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)   𝑋(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   π‘Œ(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)

Proof of Theorem efgcpbl2
StepHypRef Expression
1 efgval.w . . . 4 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . 4 ∼ = ( ~FG β€˜πΌ)
31, 2efger 19638 . . 3 ∼ Er π‘Š
43a1i 11 . 2 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ∼ Er π‘Š)
5 simpl 482 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐴 ∼ 𝑋)
64, 5ercl 8716 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐴 ∈ π‘Š)
7 wrd0 14495 . . . . 5 βˆ… ∈ Word (𝐼 Γ— 2o)
81efgrcl 19635 . . . . . . 7 (𝐴 ∈ π‘Š β†’ (𝐼 ∈ V ∧ π‘Š = Word (𝐼 Γ— 2o)))
96, 8syl 17 . . . . . 6 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐼 ∈ V ∧ π‘Š = Word (𝐼 Γ— 2o)))
109simprd 495 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ π‘Š = Word (𝐼 Γ— 2o))
117, 10eleqtrrid 2834 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ βˆ… ∈ π‘Š)
12 simpr 484 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐡 ∼ π‘Œ)
13 efgval2.m . . . . 5 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
14 efgval2.t . . . . 5 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
15 efgred.d . . . . 5 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
16 efgred.s . . . . 5 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
171, 2, 13, 14, 15, 16efgcpbl 19676 . . . 4 ((𝐴 ∈ π‘Š ∧ βˆ… ∈ π‘Š ∧ 𝐡 ∼ π‘Œ) β†’ ((𝐴 ++ 𝐡) ++ βˆ…) ∼ ((𝐴 ++ π‘Œ) ++ βˆ…))
186, 11, 12, 17syl3anc 1368 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((𝐴 ++ 𝐡) ++ βˆ…) ∼ ((𝐴 ++ π‘Œ) ++ βˆ…))
196, 10eleqtrd 2829 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐴 ∈ Word (𝐼 Γ— 2o))
204, 12ercl 8716 . . . . . 6 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐡 ∈ π‘Š)
2120, 10eleqtrd 2829 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝐡 ∈ Word (𝐼 Γ— 2o))
22 ccatcl 14530 . . . . 5 ((𝐴 ∈ Word (𝐼 Γ— 2o) ∧ 𝐡 ∈ Word (𝐼 Γ— 2o)) β†’ (𝐴 ++ 𝐡) ∈ Word (𝐼 Γ— 2o))
2319, 21, 22syl2anc 583 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ 𝐡) ∈ Word (𝐼 Γ— 2o))
24 ccatrid 14543 . . . 4 ((𝐴 ++ 𝐡) ∈ Word (𝐼 Γ— 2o) β†’ ((𝐴 ++ 𝐡) ++ βˆ…) = (𝐴 ++ 𝐡))
2523, 24syl 17 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((𝐴 ++ 𝐡) ++ βˆ…) = (𝐴 ++ 𝐡))
264, 12ercl2 8718 . . . . . 6 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ π‘Œ ∈ π‘Š)
2726, 10eleqtrd 2829 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ π‘Œ ∈ Word (𝐼 Γ— 2o))
28 ccatcl 14530 . . . . 5 ((𝐴 ∈ Word (𝐼 Γ— 2o) ∧ π‘Œ ∈ Word (𝐼 Γ— 2o)) β†’ (𝐴 ++ π‘Œ) ∈ Word (𝐼 Γ— 2o))
2919, 27, 28syl2anc 583 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ π‘Œ) ∈ Word (𝐼 Γ— 2o))
30 ccatrid 14543 . . . 4 ((𝐴 ++ π‘Œ) ∈ Word (𝐼 Γ— 2o) β†’ ((𝐴 ++ π‘Œ) ++ βˆ…) = (𝐴 ++ π‘Œ))
3129, 30syl 17 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((𝐴 ++ π‘Œ) ++ βˆ…) = (𝐴 ++ π‘Œ))
3218, 25, 313brtr3d 5172 . 2 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ 𝐡) ∼ (𝐴 ++ π‘Œ))
331, 2, 13, 14, 15, 16efgcpbl 19676 . . . 4 ((βˆ… ∈ π‘Š ∧ π‘Œ ∈ π‘Š ∧ 𝐴 ∼ 𝑋) β†’ ((βˆ… ++ 𝐴) ++ π‘Œ) ∼ ((βˆ… ++ 𝑋) ++ π‘Œ))
3411, 26, 5, 33syl3anc 1368 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((βˆ… ++ 𝐴) ++ π‘Œ) ∼ ((βˆ… ++ 𝑋) ++ π‘Œ))
35 ccatlid 14542 . . . . 5 (𝐴 ∈ Word (𝐼 Γ— 2o) β†’ (βˆ… ++ 𝐴) = 𝐴)
3619, 35syl 17 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (βˆ… ++ 𝐴) = 𝐴)
3736oveq1d 7420 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((βˆ… ++ 𝐴) ++ π‘Œ) = (𝐴 ++ π‘Œ))
384, 5ercl2 8718 . . . . . 6 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝑋 ∈ π‘Š)
3938, 10eleqtrd 2829 . . . . 5 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ 𝑋 ∈ Word (𝐼 Γ— 2o))
40 ccatlid 14542 . . . . 5 (𝑋 ∈ Word (𝐼 Γ— 2o) β†’ (βˆ… ++ 𝑋) = 𝑋)
4139, 40syl 17 . . . 4 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (βˆ… ++ 𝑋) = 𝑋)
4241oveq1d 7420 . . 3 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ ((βˆ… ++ 𝑋) ++ π‘Œ) = (𝑋 ++ π‘Œ))
4334, 37, 423brtr3d 5172 . 2 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ π‘Œ) ∼ (𝑋 ++ π‘Œ))
444, 32, 43ertrd 8721 1 ((𝐴 ∼ 𝑋 ∧ 𝐡 ∼ π‘Œ) β†’ (𝐴 ++ 𝐡) ∼ (𝑋 ++ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  {crab 3426  Vcvv 3468   βˆ– cdif 3940  βˆ…c0 4317  {csn 4623  βŸ¨cop 4629  βŸ¨cotp 4631  βˆͺ ciun 4990   class class class wbr 5141   ↦ cmpt 5224   I cid 5566   Γ— cxp 5667  ran crn 5670  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  1oc1o 8460  2oc2o 8461   Er wer 8702  0cc0 11112  1c1 11113   βˆ’ cmin 11448  ...cfz 13490  ..^cfzo 13633  β™―chash 14295  Word cword 14470   ++ cconcat 14526   splice csplice 14705  βŸ¨β€œcs2 14798   ~FG cefg 19626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-ot 4632  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-ec 8707  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552  df-substr 14597  df-pfx 14627  df-splice 14706  df-s2 14805  df-efg 19629
This theorem is referenced by:  frgpcpbl  19679
  Copyright terms: Public domain W3C validator