![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbl2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgcpbl2 | ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | 1, 2 | efger 19628 | . . 3 ⊢ ∼ Er 𝑊 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∼ Er 𝑊) |
5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∼ 𝑋) | |
6 | 4, 5 | ercl 8718 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ 𝑊) |
7 | wrd0 14494 | . . . . 5 ⊢ ∅ ∈ Word (𝐼 × 2o) | |
8 | 1 | efgrcl 19625 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
10 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑊 = Word (𝐼 × 2o)) |
11 | 7, 10 | eleqtrrid 2839 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∅ ∈ 𝑊) |
12 | simpr 484 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∼ 𝑌) | |
13 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
14 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
15 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
16 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
17 | 1, 2, 13, 14, 15, 16 | efgcpbl 19666 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
18 | 6, 11, 12, 17 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
19 | 6, 10 | eleqtrd 2834 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ Word (𝐼 × 2o)) |
20 | 4, 12 | ercl 8718 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ 𝑊) |
21 | 20, 10 | eleqtrd 2834 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ Word (𝐼 × 2o)) |
22 | ccatcl 14529 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝐵 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) | |
23 | 19, 21, 22 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) |
24 | ccatrid 14542 | . . . 4 ⊢ ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) |
26 | 4, 12 | ercl2 8720 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ 𝑊) |
27 | 26, 10 | eleqtrd 2834 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ Word (𝐼 × 2o)) |
28 | ccatcl 14529 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝑌 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) | |
29 | 19, 27, 28 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) |
30 | ccatrid 14542 | . . . 4 ⊢ ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) |
32 | 18, 25, 31 | 3brtr3d 5179 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝐴 ++ 𝑌)) |
33 | 1, 2, 13, 14, 15, 16 | efgcpbl 19666 | . . . 4 ⊢ ((∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
34 | 11, 26, 5, 33 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
35 | ccatlid 14541 | . . . . 5 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (∅ ++ 𝐴) = 𝐴) | |
36 | 19, 35 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝐴) = 𝐴) |
37 | 36 | oveq1d 7427 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌)) |
38 | 4, 5 | ercl2 8720 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ 𝑊) |
39 | 38, 10 | eleqtrd 2834 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ Word (𝐼 × 2o)) |
40 | ccatlid 14541 | . . . . 5 ⊢ (𝑋 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑋) = 𝑋) | |
41 | 39, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝑋) = 𝑋) |
42 | 41 | oveq1d 7427 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌)) |
43 | 34, 37, 42 | 3brtr3d 5179 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∼ (𝑋 ++ 𝑌)) |
44 | 4, 32, 43 | ertrd 8723 | 1 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 Vcvv 3473 ∖ cdif 3945 ∅c0 4322 {csn 4628 〈cop 4634 〈cotp 4636 ∪ ciun 4997 class class class wbr 5148 ↦ cmpt 5231 I cid 5573 × cxp 5674 ran crn 5677 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 1oc1o 8463 2oc2o 8464 Er wer 8704 0cc0 11114 1c1 11115 − cmin 11449 ...cfz 13489 ..^cfzo 13632 ♯chash 14295 Word cword 14469 ++ cconcat 14525 splice csplice 14704 〈“cs2 14797 ~FG cefg 19616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-ec 8709 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-substr 14596 df-pfx 14626 df-splice 14705 df-s2 14804 df-efg 19619 |
This theorem is referenced by: frgpcpbl 19669 |
Copyright terms: Public domain | W3C validator |