![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbl2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgcpbl2 | ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | 1, 2 | efger 18483 | . . 3 ⊢ ∼ Er 𝑊 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∼ Er 𝑊) |
5 | simpl 476 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∼ 𝑋) | |
6 | 4, 5 | ercl 8021 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ 𝑊) |
7 | wrd0 13600 | . . . . 5 ⊢ ∅ ∈ Word (𝐼 × 2o) | |
8 | 1 | efgrcl 18480 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
10 | 9 | simprd 491 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑊 = Word (𝐼 × 2o)) |
11 | 7, 10 | syl5eleqr 2914 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∅ ∈ 𝑊) |
12 | simpr 479 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∼ 𝑌) | |
13 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
14 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
15 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
16 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
17 | 1, 2, 13, 14, 15, 16 | efgcpbl 18523 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
18 | 6, 11, 12, 17 | syl3anc 1496 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
19 | 6, 10 | eleqtrd 2909 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ Word (𝐼 × 2o)) |
20 | 4, 12 | ercl 8021 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ 𝑊) |
21 | 20, 10 | eleqtrd 2909 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ Word (𝐼 × 2o)) |
22 | ccatcl 13635 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝐵 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) | |
23 | 19, 21, 22 | syl2anc 581 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o)) |
24 | ccatrid 13648 | . . . 4 ⊢ ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) |
26 | 4, 12 | ercl2 8023 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ 𝑊) |
27 | 26, 10 | eleqtrd 2909 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ Word (𝐼 × 2o)) |
28 | ccatcl 13635 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2o) ∧ 𝑌 ∈ Word (𝐼 × 2o)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) | |
29 | 19, 27, 28 | syl2anc 581 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o)) |
30 | ccatrid 13648 | . . . 4 ⊢ ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2o) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) |
32 | 18, 25, 31 | 3brtr3d 4905 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝐴 ++ 𝑌)) |
33 | 1, 2, 13, 14, 15, 16 | efgcpbl 18523 | . . . 4 ⊢ ((∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
34 | 11, 26, 5, 33 | syl3anc 1496 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
35 | ccatlid 13647 | . . . . 5 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (∅ ++ 𝐴) = 𝐴) | |
36 | 19, 35 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝐴) = 𝐴) |
37 | 36 | oveq1d 6921 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌)) |
38 | 4, 5 | ercl2 8023 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ 𝑊) |
39 | 38, 10 | eleqtrd 2909 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ Word (𝐼 × 2o)) |
40 | ccatlid 13647 | . . . . 5 ⊢ (𝑋 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑋) = 𝑋) | |
41 | 39, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝑋) = 𝑋) |
42 | 41 | oveq1d 6921 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌)) |
43 | 34, 37, 42 | 3brtr3d 4905 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∼ (𝑋 ++ 𝑌)) |
44 | 4, 32, 43 | ertrd 8026 | 1 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3118 {crab 3122 Vcvv 3415 ∖ cdif 3796 ∅c0 4145 {csn 4398 〈cop 4404 〈cotp 4406 ∪ ciun 4741 class class class wbr 4874 ↦ cmpt 4953 I cid 5250 × cxp 5341 ran crn 5344 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 1oc1o 7820 2oc2o 7821 Er wer 8007 0cc0 10253 1c1 10254 − cmin 10586 ...cfz 12620 ..^cfzo 12761 ♯chash 13411 Word cword 13575 ++ cconcat 13631 splice csplice 13856 〈“cs2 13963 ~FG cefg 18471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-ec 8012 df-map 8125 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-concat 13632 df-s1 13657 df-substr 13702 df-pfx 13751 df-splice 13858 df-s2 13970 df-efg 18474 |
This theorem is referenced by: frgpcpbl 18526 |
Copyright terms: Public domain | W3C validator |