MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse2 Structured version   Visualization version   GIF version

Theorem exse2 7836
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2 (𝑅𝑉𝑅 Se 𝐴)

Proof of Theorem exse2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3405 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)}
2 vex 3446 . . . . . . . 8 𝑦 ∈ V
3 vex 3446 . . . . . . . 8 𝑥 ∈ V
42, 3breldm 5854 . . . . . . 7 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
54adantl 483 . . . . . 6 ((𝑦𝐴𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅)
65abssi 4018 . . . . 5 {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)} ⊆ dom 𝑅
71, 6eqsstri 3969 . . . 4 {𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅
8 dmexg 7822 . . . 4 (𝑅𝑉 → dom 𝑅 ∈ V)
9 ssexg 5271 . . . 4 (({𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 9sylancr 588 . . 3 (𝑅𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1110ralrimivw 3144 . 2 (𝑅𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
12 df-se 5580 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1311, 12sylibr 233 1 (𝑅𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  {cab 2714  wral 3062  {crab 3404  Vcvv 3442  wss 3901   class class class wbr 5096   Se wse 5577  dom cdm 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-se 5580  df-cnv 5632  df-dm 5634  df-rn 5635
This theorem is referenced by:  dfac8clem  9893
  Copyright terms: Public domain W3C validator