![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version |
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3430 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
2 | vex 3475 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3475 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | breldm 5911 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) |
6 | 5 | abssi 4065 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 |
7 | 1, 6 | eqsstri 4014 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 |
8 | dmexg 7909 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
9 | ssexg 5323 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | sylancr 586 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
11 | 10 | ralrimivw 3147 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
12 | df-se 5634 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 {cab 2705 ∀wral 3058 {crab 3429 Vcvv 3471 ⊆ wss 3947 class class class wbr 5148 Se wse 5631 dom cdm 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-se 5634 df-cnv 5686 df-dm 5688 df-rn 5689 |
This theorem is referenced by: dfac8clem 10055 |
Copyright terms: Public domain | W3C validator |