![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version |
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3425 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
2 | vex 3470 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3470 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | breldm 5899 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) |
6 | 5 | abssi 4060 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 |
7 | 1, 6 | eqsstri 4009 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 |
8 | dmexg 7888 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
9 | ssexg 5314 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | sylancr 586 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
11 | 10 | ralrimivw 3142 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
12 | df-se 5623 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 {cab 2701 ∀wral 3053 {crab 3424 Vcvv 3466 ⊆ wss 3941 class class class wbr 5139 Se wse 5620 dom cdm 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-se 5623 df-cnv 5675 df-dm 5677 df-rn 5678 |
This theorem is referenced by: dfac8clem 10024 |
Copyright terms: Public domain | W3C validator |