|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version | ||
| Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab 3436 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
| 2 | vex 3483 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 3 | vex 3483 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | breldm 5918 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) | 
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) | 
| 6 | 5 | abssi 4069 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 | 
| 7 | 1, 6 | eqsstri 4029 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 | 
| 8 | dmexg 7924 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 9 | ssexg 5322 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 10 | 7, 8, 9 | sylancr 587 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | 
| 11 | 10 | ralrimivw 3149 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | 
| 12 | df-se 5637 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 {cab 2713 ∀wral 3060 {crab 3435 Vcvv 3479 ⊆ wss 3950 class class class wbr 5142 Se wse 5634 dom cdm 5684 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-se 5637 df-cnv 5692 df-dm 5694 df-rn 5695 | 
| This theorem is referenced by: dfac8clem 10073 | 
| Copyright terms: Public domain | W3C validator |