![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version |
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
2 | vex 3492 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | breldm 5933 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) |
6 | 5 | abssi 4093 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 |
7 | 1, 6 | eqsstri 4043 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 |
8 | dmexg 7941 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
9 | ssexg 5341 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | sylancr 586 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
11 | 10 | ralrimivw 3156 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
12 | df-se 5653 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
13 | 11, 12 | sylibr 234 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2717 ∀wral 3067 {crab 3443 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 Se wse 5650 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-se 5653 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: dfac8clem 10101 |
Copyright terms: Public domain | W3C validator |