MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse2 Structured version   Visualization version   GIF version

Theorem exse2 7893
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2 (𝑅𝑉𝑅 Se 𝐴)

Proof of Theorem exse2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3406 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)}
2 vex 3451 . . . . . . . 8 𝑦 ∈ V
3 vex 3451 . . . . . . . 8 𝑥 ∈ V
42, 3breldm 5872 . . . . . . 7 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
54adantl 481 . . . . . 6 ((𝑦𝐴𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅)
65abssi 4033 . . . . 5 {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)} ⊆ dom 𝑅
71, 6eqsstri 3993 . . . 4 {𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅
8 dmexg 7877 . . . 4 (𝑅𝑉 → dom 𝑅 ∈ V)
9 ssexg 5278 . . . 4 (({𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 9sylancr 587 . . 3 (𝑅𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1110ralrimivw 3129 . 2 (𝑅𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
12 df-se 5592 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1311, 12sylibr 234 1 (𝑅𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  wral 3044  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107   Se wse 5589  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-se 5592  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  dfac8clem  9985
  Copyright terms: Public domain W3C validator