| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version | ||
| Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3397 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
| 2 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 3 | vex 3441 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | breldm 5854 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) |
| 6 | 5 | abssi 4017 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 |
| 7 | 1, 6 | eqsstri 3977 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 |
| 8 | dmexg 7840 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 9 | ssexg 5265 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 10 | 7, 8, 9 | sylancr 587 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| 11 | 10 | ralrimivw 3129 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| 12 | df-se 5575 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 {cab 2711 ∀wral 3048 {crab 3396 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 Se wse 5572 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-se 5575 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: dfac8clem 9934 |
| Copyright terms: Public domain | W3C validator |