MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldm Structured version   Visualization version   GIF version

Theorem breldm 5847
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
breldm (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)

Proof of Theorem breldm
StepHypRef Expression
1 df-br 5090 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 opeldm.1 . . 3 𝐴 ∈ V
3 opeldm.2 . . 3 𝐵 ∈ V
42, 3opeldm 5846 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝐴 ∈ dom 𝑅)
51, 4sylbi 217 1 (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cop 4579   class class class wbr 5089  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  imaindm  6246  funcnv3  6551  opabiota  6904  dffv2  6917  dff13  7188  exse2  7847  reldmtpos  8164  rntpos  8169  dftpos4  8175  tpostpos  8176  fprlem1  8230  iserd  8648  dmttrcl  9611  ttrclse  9617  frrlem15  9650  dcomex  10338  axdc2lem  10339  dmrecnq  10859  cotr2g  14883  shftfval  14977  geolim2  15778  geomulcvg  15783  geoisum1c  15787  cvgrat  15790  ntrivcvg  15804  eftlub  16018  eflegeo  16030  rpnnen2lem5  16127  imasleval  17445  psdmrn  18479  psssdm2  18487  ovoliunnul  25435  vitalilem5  25540  dvcj  25881  dvrec  25886  dvef  25911  ftc1cn  25977  aaliou3lem3  26279  ulmdv  26339  dvradcnv  26357  abelthlem7  26375  abelthlem9  26377  logtayllem  26595  leibpi  26879  log2tlbnd  26882  zetacvg  26952  hhcms  31183  hhsscms  31258  occl  31284  gsummpt2co  33028  iprodgam  35786  imageval  35972  knoppcnlem6  36542  knoppndvlem6  36561  knoppf  36579  unccur  37642  ftc1cnnc  37731  geomcau  37798  dvradcnv2  44439  xpco2  48956
  Copyright terms: Public domain W3C validator