MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldm Structured version   Visualization version   GIF version

Theorem breldm 5933
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
breldm (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)

Proof of Theorem breldm
StepHypRef Expression
1 df-br 5167 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 opeldm.1 . . 3 𝐴 ∈ V
3 opeldm.2 . . 3 𝐵 ∈ V
42, 3opeldm 5932 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝐴 ∈ dom 𝑅)
51, 4sylbi 217 1 (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  cop 4654   class class class wbr 5166  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-dm 5710
This theorem is referenced by:  imaindm  6330  funcnv3  6648  opabiota  7004  dffv2  7017  dff13  7292  exse2  7957  reldmtpos  8275  rntpos  8280  dftpos4  8286  tpostpos  8287  fprlem1  8341  wfrlem5OLD  8369  iserd  8789  dmttrcl  9790  ttrclse  9796  frrlem15  9826  dcomex  10516  axdc2lem  10517  dmrecnq  11037  cotr2g  15025  shftfval  15119  geolim2  15919  geomulcvg  15924  geoisum1c  15928  cvgrat  15931  ntrivcvg  15945  eftlub  16157  eflegeo  16169  rpnnen2lem5  16266  imasleval  17601  psdmrn  18643  psssdm2  18651  ovoliunnul  25561  vitalilem5  25666  dvcj  26008  dvrec  26013  dvef  26038  ftc1cn  26104  aaliou3lem3  26404  ulmdv  26464  dvradcnv  26482  abelthlem7  26500  abelthlem9  26502  logtayllem  26719  leibpi  27003  log2tlbnd  27006  zetacvg  27076  hhcms  31235  hhsscms  31310  occl  31336  gsummpt2co  33031  iprodgam  35704  imageval  35894  knoppcnlem6  36464  knoppndvlem6  36483  knoppf  36501  unccur  37563  ftc1cnnc  37652  geomcau  37719  dvradcnv2  44316
  Copyright terms: Public domain W3C validator