Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5076 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | opeldm 5819 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3433 〈cop 4568 class class class wbr 5075 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-dm 5600 |
This theorem is referenced by: funcnv3 6511 opabiota 6860 dffv2 6872 dff13 7137 exse2 7773 reldmtpos 8059 rntpos 8064 dftpos4 8070 tpostpos 8071 fprlem1 8125 wfrlem5OLD 8153 iserd 8533 dmttrcl 9488 ttrclse 9494 frrlem15 9524 dcomex 10212 axdc2lem 10213 dmrecnq 10733 cotr2g 14696 shftfval 14790 geolim2 15592 geomulcvg 15597 geoisum1c 15601 cvgrat 15604 ntrivcvg 15618 eftlub 15827 eflegeo 15839 rpnnen2lem5 15936 imasleval 17261 psdmrn 18300 psssdm2 18308 ovoliunnul 24680 vitalilem5 24785 dvcj 25123 dvrec 25128 dvef 25153 ftc1cn 25216 aaliou3lem3 25513 ulmdv 25571 dvradcnv 25589 abelthlem7 25606 abelthlem9 25608 logtayllem 25823 leibpi 26101 log2tlbnd 26104 zetacvg 26173 hhcms 29574 hhsscms 29649 occl 29675 gsummpt2co 31317 iprodgam 33717 imaindm 33762 imageval 34241 knoppcnlem6 34687 knoppndvlem6 34706 knoppf 34724 unccur 35769 ftc1cnnc 35858 geomcau 35926 dvradcnv2 41972 |
Copyright terms: Public domain | W3C validator |