| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5874 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: imaindm 6275 funcnv3 6589 opabiota 6946 dffv2 6959 dff13 7232 exse2 7896 reldmtpos 8216 rntpos 8221 dftpos4 8227 tpostpos 8228 fprlem1 8282 iserd 8700 dmttrcl 9681 ttrclse 9687 frrlem15 9717 dcomex 10407 axdc2lem 10408 dmrecnq 10928 cotr2g 14949 shftfval 15043 geolim2 15844 geomulcvg 15849 geoisum1c 15853 cvgrat 15856 ntrivcvg 15870 eftlub 16084 eflegeo 16096 rpnnen2lem5 16193 imasleval 17511 psdmrn 18539 psssdm2 18547 ovoliunnul 25415 vitalilem5 25520 dvcj 25861 dvrec 25866 dvef 25891 ftc1cn 25957 aaliou3lem3 26259 ulmdv 26319 dvradcnv 26337 abelthlem7 26355 abelthlem9 26357 logtayllem 26575 leibpi 26859 log2tlbnd 26862 zetacvg 26932 hhcms 31139 hhsscms 31214 occl 31240 gsummpt2co 32995 iprodgam 35736 imageval 35925 knoppcnlem6 36493 knoppndvlem6 36512 knoppf 36530 unccur 37604 ftc1cnnc 37693 geomcau 37760 dvradcnv2 44343 xpco2 48849 |
| Copyright terms: Public domain | W3C validator |