| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5093 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5850 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 〈cop 4583 class class class wbr 5092 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: imaindm 6247 funcnv3 6552 opabiota 6905 dffv2 6918 dff13 7191 exse2 7850 reldmtpos 8167 rntpos 8172 dftpos4 8178 tpostpos 8179 fprlem1 8233 iserd 8651 dmttrcl 9617 ttrclse 9623 frrlem15 9653 dcomex 10341 axdc2lem 10342 dmrecnq 10862 cotr2g 14883 shftfval 14977 geolim2 15778 geomulcvg 15783 geoisum1c 15787 cvgrat 15790 ntrivcvg 15804 eftlub 16018 eflegeo 16030 rpnnen2lem5 16127 imasleval 17445 psdmrn 18479 psssdm2 18487 ovoliunnul 25406 vitalilem5 25511 dvcj 25852 dvrec 25857 dvef 25882 ftc1cn 25948 aaliou3lem3 26250 ulmdv 26310 dvradcnv 26328 abelthlem7 26346 abelthlem9 26348 logtayllem 26566 leibpi 26850 log2tlbnd 26853 zetacvg 26923 hhcms 31151 hhsscms 31226 occl 31252 gsummpt2co 33010 iprodgam 35735 imageval 35924 knoppcnlem6 36492 knoppndvlem6 36511 knoppf 36529 unccur 37603 ftc1cnnc 37692 geomcau 37759 dvradcnv2 44340 xpco2 48861 |
| Copyright terms: Public domain | W3C validator |