| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5120 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5887 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 〈cop 4607 class class class wbr 5119 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-dm 5664 |
| This theorem is referenced by: imaindm 6288 funcnv3 6605 opabiota 6960 dffv2 6973 dff13 7246 exse2 7911 reldmtpos 8231 rntpos 8236 dftpos4 8242 tpostpos 8243 fprlem1 8297 wfrlem5OLD 8325 iserd 8743 dmttrcl 9733 ttrclse 9739 frrlem15 9769 dcomex 10459 axdc2lem 10460 dmrecnq 10980 cotr2g 14993 shftfval 15087 geolim2 15885 geomulcvg 15890 geoisum1c 15894 cvgrat 15897 ntrivcvg 15911 eftlub 16125 eflegeo 16137 rpnnen2lem5 16234 imasleval 17553 psdmrn 18581 psssdm2 18589 ovoliunnul 25458 vitalilem5 25563 dvcj 25904 dvrec 25909 dvef 25934 ftc1cn 26000 aaliou3lem3 26302 ulmdv 26362 dvradcnv 26380 abelthlem7 26398 abelthlem9 26400 logtayllem 26618 leibpi 26902 log2tlbnd 26905 zetacvg 26975 hhcms 31130 hhsscms 31205 occl 31231 gsummpt2co 32988 iprodgam 35705 imageval 35894 knoppcnlem6 36462 knoppndvlem6 36481 knoppf 36499 unccur 37573 ftc1cnnc 37662 geomcau 37729 dvradcnv2 44319 |
| Copyright terms: Public domain | W3C validator |