| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5871 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-dm 5648 |
| This theorem is referenced by: imaindm 6272 funcnv3 6586 opabiota 6943 dffv2 6956 dff13 7229 exse2 7893 reldmtpos 8213 rntpos 8218 dftpos4 8224 tpostpos 8225 fprlem1 8279 iserd 8697 dmttrcl 9674 ttrclse 9680 frrlem15 9710 dcomex 10400 axdc2lem 10401 dmrecnq 10921 cotr2g 14942 shftfval 15036 geolim2 15837 geomulcvg 15842 geoisum1c 15846 cvgrat 15849 ntrivcvg 15863 eftlub 16077 eflegeo 16089 rpnnen2lem5 16186 imasleval 17504 psdmrn 18532 psssdm2 18540 ovoliunnul 25408 vitalilem5 25513 dvcj 25854 dvrec 25859 dvef 25884 ftc1cn 25950 aaliou3lem3 26252 ulmdv 26312 dvradcnv 26330 abelthlem7 26348 abelthlem9 26350 logtayllem 26568 leibpi 26852 log2tlbnd 26855 zetacvg 26925 hhcms 31132 hhsscms 31207 occl 31233 gsummpt2co 32988 iprodgam 35729 imageval 35918 knoppcnlem6 36486 knoppndvlem6 36505 knoppf 36523 unccur 37597 ftc1cnnc 37686 geomcau 37753 dvradcnv2 44336 xpco2 48845 |
| Copyright terms: Public domain | W3C validator |