| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5861 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: imaindm 6260 funcnv3 6570 opabiota 6925 dffv2 6938 dff13 7211 exse2 7873 reldmtpos 8190 rntpos 8195 dftpos4 8201 tpostpos 8202 fprlem1 8256 iserd 8674 dmttrcl 9650 ttrclse 9656 frrlem15 9686 dcomex 10376 axdc2lem 10377 dmrecnq 10897 cotr2g 14918 shftfval 15012 geolim2 15813 geomulcvg 15818 geoisum1c 15822 cvgrat 15825 ntrivcvg 15839 eftlub 16053 eflegeo 16065 rpnnen2lem5 16162 imasleval 17480 psdmrn 18514 psssdm2 18522 ovoliunnul 25441 vitalilem5 25546 dvcj 25887 dvrec 25892 dvef 25917 ftc1cn 25983 aaliou3lem3 26285 ulmdv 26345 dvradcnv 26363 abelthlem7 26381 abelthlem9 26383 logtayllem 26601 leibpi 26885 log2tlbnd 26888 zetacvg 26958 hhcms 31182 hhsscms 31257 occl 31283 gsummpt2co 33031 iprodgam 35722 imageval 35911 knoppcnlem6 36479 knoppndvlem6 36498 knoppf 36516 unccur 37590 ftc1cnnc 37679 geomcau 37746 dvradcnv2 44329 xpco2 48838 |
| Copyright terms: Public domain | W3C validator |