| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5846 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: imaindm 6246 funcnv3 6551 opabiota 6904 dffv2 6917 dff13 7188 exse2 7847 reldmtpos 8164 rntpos 8169 dftpos4 8175 tpostpos 8176 fprlem1 8230 iserd 8648 dmttrcl 9611 ttrclse 9617 frrlem15 9650 dcomex 10338 axdc2lem 10339 dmrecnq 10859 cotr2g 14883 shftfval 14977 geolim2 15778 geomulcvg 15783 geoisum1c 15787 cvgrat 15790 ntrivcvg 15804 eftlub 16018 eflegeo 16030 rpnnen2lem5 16127 imasleval 17445 psdmrn 18479 psssdm2 18487 ovoliunnul 25435 vitalilem5 25540 dvcj 25881 dvrec 25886 dvef 25911 ftc1cn 25977 aaliou3lem3 26279 ulmdv 26339 dvradcnv 26357 abelthlem7 26375 abelthlem9 26377 logtayllem 26595 leibpi 26879 log2tlbnd 26882 zetacvg 26952 hhcms 31183 hhsscms 31258 occl 31284 gsummpt2co 33028 iprodgam 35786 imageval 35972 knoppcnlem6 36542 knoppndvlem6 36561 knoppf 36579 unccur 37642 ftc1cnnc 37731 geomcau 37798 dvradcnv2 44439 xpco2 48956 |
| Copyright terms: Public domain | W3C validator |