| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 5861 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: imaindm 6260 funcnv3 6570 opabiota 6925 dffv2 6938 dff13 7211 exse2 7873 reldmtpos 8190 rntpos 8195 dftpos4 8201 tpostpos 8202 fprlem1 8256 iserd 8674 dmttrcl 9652 ttrclse 9658 frrlem15 9688 dcomex 10378 axdc2lem 10379 dmrecnq 10899 cotr2g 14919 shftfval 15013 geolim2 15814 geomulcvg 15819 geoisum1c 15823 cvgrat 15826 ntrivcvg 15840 eftlub 16054 eflegeo 16066 rpnnen2lem5 16163 imasleval 17481 psdmrn 18515 psssdm2 18523 ovoliunnul 25442 vitalilem5 25547 dvcj 25888 dvrec 25893 dvef 25918 ftc1cn 25984 aaliou3lem3 26286 ulmdv 26346 dvradcnv 26364 abelthlem7 26382 abelthlem9 26384 logtayllem 26602 leibpi 26886 log2tlbnd 26889 zetacvg 26959 hhcms 31183 hhsscms 31258 occl 31284 gsummpt2co 33032 iprodgam 35723 imageval 35912 knoppcnlem6 36480 knoppndvlem6 36499 knoppf 36517 unccur 37591 ftc1cnnc 37680 geomcau 37747 dvradcnv2 44330 xpco2 48839 |
| Copyright terms: Public domain | W3C validator |