MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldm Structured version   Visualization version   GIF version

Theorem breldm 5872
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
breldm (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)

Proof of Theorem breldm
StepHypRef Expression
1 df-br 5108 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 opeldm.1 . . 3 𝐴 ∈ V
3 opeldm.2 . . 3 𝐵 ∈ V
42, 3opeldm 5871 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝐴 ∈ dom 𝑅)
51, 4sylbi 217 1 (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648
This theorem is referenced by:  imaindm  6272  funcnv3  6586  opabiota  6943  dffv2  6956  dff13  7229  exse2  7893  reldmtpos  8213  rntpos  8218  dftpos4  8224  tpostpos  8225  fprlem1  8279  iserd  8697  dmttrcl  9674  ttrclse  9680  frrlem15  9710  dcomex  10400  axdc2lem  10401  dmrecnq  10921  cotr2g  14942  shftfval  15036  geolim2  15837  geomulcvg  15842  geoisum1c  15846  cvgrat  15849  ntrivcvg  15863  eftlub  16077  eflegeo  16089  rpnnen2lem5  16186  imasleval  17504  psdmrn  18532  psssdm2  18540  ovoliunnul  25408  vitalilem5  25513  dvcj  25854  dvrec  25859  dvef  25884  ftc1cn  25950  aaliou3lem3  26252  ulmdv  26312  dvradcnv  26330  abelthlem7  26348  abelthlem9  26350  logtayllem  26568  leibpi  26852  log2tlbnd  26855  zetacvg  26925  hhcms  31132  hhsscms  31207  occl  31233  gsummpt2co  32988  iprodgam  35729  imageval  35918  knoppcnlem6  36486  knoppndvlem6  36505  knoppf  36523  unccur  37597  ftc1cnnc  37686  geomcau  37753  dvradcnv2  44336  xpco2  48845
  Copyright terms: Public domain W3C validator