Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breldm | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | opeldm 5805 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: funcnv3 6488 opabiota 6833 dffv2 6845 dff13 7109 exse2 7738 reldmtpos 8021 rntpos 8026 dftpos4 8032 tpostpos 8033 fprlem1 8087 wfrlem5OLD 8115 iserd 8482 frrlem15 9446 dcomex 10134 axdc2lem 10135 dmrecnq 10655 cotr2g 14615 shftfval 14709 geolim2 15511 geomulcvg 15516 geoisum1c 15520 cvgrat 15523 ntrivcvg 15537 eftlub 15746 eflegeo 15758 rpnnen2lem5 15855 imasleval 17169 psdmrn 18206 psssdm2 18214 ovoliunnul 24576 vitalilem5 24681 dvcj 25019 dvrec 25024 dvef 25049 ftc1cn 25112 aaliou3lem3 25409 ulmdv 25467 dvradcnv 25485 abelthlem7 25502 abelthlem9 25504 logtayllem 25719 leibpi 25997 log2tlbnd 26000 zetacvg 26069 hhcms 29466 hhsscms 29541 occl 29567 gsummpt2co 31210 iprodgam 33614 imaindm 33659 dmttrcl 33707 ttrclse 33713 imageval 34159 knoppcnlem6 34605 knoppndvlem6 34624 knoppf 34642 unccur 35687 ftc1cnnc 35776 geomcau 35844 dvradcnv2 41854 |
Copyright terms: Public domain | W3C validator |