| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7696 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4137 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5926 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3953 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5273 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∪ cuni 4867 dom cdm 5631 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: dmexd 7859 dmfex 7861 dmex 7865 iprc 7867 exse2 7873 xpexr2 7875 xpexcnv 7876 soex 7877 cnvexg 7880 coexg 7885 cofunexg 7907 offval3 7940 opabn1stprc 8016 suppval 8118 funsssuppss 8146 suppssov1 8153 suppssov2 8154 suppssfv 8158 tposexg 8196 tfrlem12 8334 tfrlem13 8335 erexb 8673 f1vrnfibi 9269 oion 9465 ttrclexg 9652 fpwwe2lem3 10562 hashfn 14316 hashfundm 14383 hashf1dmrn 14384 fundmge2nop0 14443 fun2dmnop0 14445 trclexlem 14936 relexp0g 14964 relexpsucnnr 14967 o1of2 15555 isofn 17713 ssclem 17757 ssc2 17760 ssctr 17763 subsubc 17791 resf1st 17832 resf2nd 17833 funcres 17834 dprddomprc 19908 dprdval0prc 19910 subgdmdprd 19942 dprd2da 19950 decpmatval0 22627 pmatcollpw3lem 22646 ordtbaslem 23051 ordtuni 23053 ordtbas2 23054 ordtbas 23055 ordttopon 23056 ordtopn1 23057 ordtopn2 23058 txindislem 23496 ordthmeolem 23664 ptcmplem2 23916 tuslem 24130 dvnff 25801 bdayval 27536 noextend 27554 bdayfo 27565 vtxdgf 29375 fdifsuppconst 32585 ressupprn 32586 ofcfval3 34065 braew 34205 omsval 34257 sibfof 34304 sitmcl 34315 cndprobval 34397 tailf 36336 tailfb 36338 ismgmOLD 37817 dfcnvrefrels2 38492 dfcnvrefrels3 38493 rclexi 43577 rtrclexlem 43578 cnvrcl0 43587 dfrtrcl5 43591 relexpmulg 43672 relexp01min 43675 relexpxpmin 43679 unidmex 45017 caragenval 46464 caragenunidm 46479 itcoval0 48624 itcoval1 48625 isofnALT 48993 |
| Copyright terms: Public domain | W3C validator |