| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7719 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7719 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4144 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5940 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3959 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5281 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∪ cuni 4874 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: dmexd 7882 dmfex 7884 dmex 7888 iprc 7890 exse2 7896 xpexr2 7898 xpexcnv 7899 soex 7900 cnvexg 7903 coexg 7908 cofunexg 7930 offval3 7964 opabn1stprc 8040 suppval 8144 funsssuppss 8172 suppssov1 8179 suppssov2 8180 suppssfv 8184 tposexg 8222 tfrlem12 8360 tfrlem13 8361 erexb 8699 f1vrnfibi 9300 oion 9496 ttrclexg 9683 fpwwe2lem3 10593 hashfn 14347 hashfundm 14414 hashf1dmrn 14415 fundmge2nop0 14474 fun2dmnop0 14476 trclexlem 14967 relexp0g 14995 relexpsucnnr 14998 o1of2 15586 isofn 17744 ssclem 17788 ssc2 17791 ssctr 17794 subsubc 17822 resf1st 17863 resf2nd 17864 funcres 17865 dprddomprc 19939 dprdval0prc 19941 subgdmdprd 19973 dprd2da 19981 decpmatval0 22658 pmatcollpw3lem 22677 ordtbaslem 23082 ordtuni 23084 ordtbas2 23085 ordtbas 23086 ordttopon 23087 ordtopn1 23088 ordtopn2 23089 txindislem 23527 ordthmeolem 23695 ptcmplem2 23947 tuslem 24161 dvnff 25832 bdayval 27567 noextend 27585 bdayfo 27596 vtxdgf 29406 fdifsuppconst 32619 ressupprn 32620 ofcfval3 34099 braew 34239 omsval 34291 sibfof 34338 sitmcl 34349 cndprobval 34431 tailf 36370 tailfb 36372 ismgmOLD 37851 dfcnvrefrels2 38526 dfcnvrefrels3 38527 rclexi 43611 rtrclexlem 43612 cnvrcl0 43621 dfrtrcl5 43625 relexpmulg 43706 relexp01min 43709 relexpxpmin 43713 unidmex 45051 caragenval 46498 caragenunidm 46513 itcoval0 48655 itcoval1 48656 isofnALT 49024 |
| Copyright terms: Public domain | W3C validator |