| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7680 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7680 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4131 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5919 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3947 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5265 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 ∪ cuni 4861 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: dmexd 7843 dmfex 7845 dmex 7849 iprc 7851 exse2 7857 xpexr2 7859 xpexcnv 7860 soex 7861 cnvexg 7864 coexg 7869 cofunexg 7891 offval3 7924 opabn1stprc 8000 suppval 8102 funsssuppss 8130 suppssov1 8137 suppssov2 8138 suppssfv 8142 tposexg 8180 tfrlem12 8318 tfrlem13 8319 erexb 8657 f1vrnfibi 9251 oion 9447 ttrclexg 9638 fpwwe2lem3 10546 hashfn 14300 hashfundm 14367 hashf1dmrn 14368 fundmge2nop0 14427 fun2dmnop0 14429 trclexlem 14919 relexp0g 14947 relexpsucnnr 14950 o1of2 15538 isofn 17700 ssclem 17744 ssc2 17747 ssctr 17750 subsubc 17778 resf1st 17819 resf2nd 17820 funcres 17821 dprddomprc 19899 dprdval0prc 19901 subgdmdprd 19933 dprd2da 19941 decpmatval0 22667 pmatcollpw3lem 22686 ordtbaslem 23091 ordtuni 23093 ordtbas2 23094 ordtbas 23095 ordttopon 23096 ordtopn1 23097 ordtopn2 23098 txindislem 23536 ordthmeolem 23704 ptcmplem2 23956 tuslem 24170 dvnff 25841 bdayval 27576 noextend 27594 bdayfo 27605 vtxdgf 29435 fdifsuppconst 32645 ressupprn 32646 ofcfval3 34071 braew 34211 omsval 34263 sibfof 34310 sitmcl 34321 cndprobval 34403 tailf 36351 tailfb 36353 ismgmOLD 37832 dfcnvrefrels2 38507 dfcnvrefrels3 38508 rclexi 43591 rtrclexlem 43592 cnvrcl0 43601 dfrtrcl5 43605 relexpmulg 43686 relexp01min 43689 relexpxpmin 43693 unidmex 45031 caragenval 46478 caragenunidm 46493 itcoval0 48651 itcoval1 48652 isofnALT 49020 |
| Copyright terms: Public domain | W3C validator |