| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7682 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7682 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4127 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5920 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3940 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5265 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 ∪ cuni 4860 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: dmexd 7842 dmfex 7844 dmex 7848 iprc 7850 exse2 7856 xpexr2 7858 xpexcnv 7859 soex 7860 cnvexg 7863 coexg 7868 cofunexg 7890 offval3 7923 opabn1stprc 7999 suppval 8101 funsssuppss 8129 suppssov1 8136 suppssov2 8137 suppssfv 8141 tposexg 8179 tfrlem12 8317 tfrlem13 8318 erexb 8656 f1vrnfibi 9237 oion 9433 ttrclexg 9624 fpwwe2lem3 10535 hashfn 14289 hashfundm 14356 hashf1dmrn 14357 fundmge2nop0 14416 fun2dmnop0 14418 trclexlem 14908 relexp0g 14936 relexpsucnnr 14939 o1of2 15527 isofn 17690 ssclem 17734 ssc2 17737 ssctr 17740 subsubc 17768 resf1st 17809 resf2nd 17810 funcres 17811 dprddomprc 19922 dprdval0prc 19924 subgdmdprd 19956 dprd2da 19964 decpmatval0 22699 pmatcollpw3lem 22718 ordtbaslem 23123 ordtuni 23125 ordtbas2 23126 ordtbas 23127 ordttopon 23128 ordtopn1 23129 ordtopn2 23130 txindislem 23568 ordthmeolem 23736 ptcmplem2 23988 tuslem 24201 dvnff 25872 bdayval 27607 noextend 27625 bdayfo 27636 vtxdgf 29471 fdifsuppconst 32694 ressupprn 32695 ofcfval3 34187 braew 34327 omsval 34378 sibfof 34425 sitmcl 34436 cndprobval 34518 tailf 36491 tailfb 36493 ismgmOLD 37963 dfcnvrefrels2 38693 dfcnvrefrels3 38694 rclexi 43772 rtrclexlem 43773 cnvrcl0 43782 dfrtrcl5 43786 relexpmulg 43867 relexp01min 43870 relexpxpmin 43874 unidmex 45211 caragenval 46653 caragenunidm 46668 itcoval0 48824 itcoval1 48825 isofnALT 49192 |
| Copyright terms: Public domain | W3C validator |