Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7593 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7593 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun1 4106 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5879 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3930 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5247 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
7 | 5, 6 | mpan 687 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∪ cuni 4839 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: dmexd 7752 dmfex 7754 dmex 7758 iprc 7760 exse2 7764 xpexr2 7766 xpexcnv 7767 soex 7768 cnvexg 7771 coexg 7776 cofunexg 7791 offval3 7825 opabn1stprc 7898 suppval 7979 funsssuppss 8006 suppssOLD 8011 suppssov1 8014 suppssfv 8018 tposexg 8056 tfrlem12 8220 tfrlem13 8221 erexb 8523 f1vrnfibi 9104 oion 9295 ttrclexg 9481 fpwwe2lem3 10389 hashfn 14090 fundmge2nop0 14206 fun2dmnop0 14208 trclexlem 14705 relexp0g 14733 relexpsucnnr 14736 o1of2 15322 isofn 17487 ssclem 17531 ssc2 17534 ssctr 17537 subsubc 17568 resf1st 17609 resf2nd 17610 funcres 17611 dprddomprc 19603 dprdval0prc 19605 subgdmdprd 19637 dprd2da 19645 decpmatval0 21913 pmatcollpw3lem 21932 ordtbaslem 22339 ordtuni 22341 ordtbas2 22342 ordtbas 22343 ordttopon 22344 ordtopn1 22345 ordtopn2 22346 txindislem 22784 ordthmeolem 22952 ptcmplem2 23204 tuslem 23418 tuslemOLD 23419 dvnff 25087 vtxdgf 27838 fdifsuppconst 31023 ressupprn 31024 ofcfval3 32070 braew 32210 omsval 32260 sibfof 32307 sitmcl 32318 cndprobval 32400 hashfundm 33074 hashf1dmrn 33075 bdayval 33851 noextend 33869 bdayfo 33880 tailf 34564 tailfb 34566 ismgmOLD 36008 dfcnvrefrels2 36644 dfcnvrefrels3 36645 rclexi 41223 rtrclexlem 41224 cnvrcl0 41233 dfrtrcl5 41237 relexpmulg 41318 relexp01min 41321 relexpxpmin 41325 unidmex 42598 caragenval 44031 caragenunidm 44046 itcoval0 46008 itcoval1 46009 |
Copyright terms: Public domain | W3C validator |