| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7716 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7716 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4141 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5937 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3956 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5278 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∪ cuni 4871 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: dmexd 7879 dmfex 7881 dmex 7885 iprc 7887 exse2 7893 xpexr2 7895 xpexcnv 7896 soex 7897 cnvexg 7900 coexg 7905 cofunexg 7927 offval3 7961 opabn1stprc 8037 suppval 8141 funsssuppss 8169 suppssov1 8176 suppssov2 8177 suppssfv 8181 tposexg 8219 tfrlem12 8357 tfrlem13 8358 erexb 8696 f1vrnfibi 9293 oion 9489 ttrclexg 9676 fpwwe2lem3 10586 hashfn 14340 hashfundm 14407 hashf1dmrn 14408 fundmge2nop0 14467 fun2dmnop0 14469 trclexlem 14960 relexp0g 14988 relexpsucnnr 14991 o1of2 15579 isofn 17737 ssclem 17781 ssc2 17784 ssctr 17787 subsubc 17815 resf1st 17856 resf2nd 17857 funcres 17858 dprddomprc 19932 dprdval0prc 19934 subgdmdprd 19966 dprd2da 19974 decpmatval0 22651 pmatcollpw3lem 22670 ordtbaslem 23075 ordtuni 23077 ordtbas2 23078 ordtbas 23079 ordttopon 23080 ordtopn1 23081 ordtopn2 23082 txindislem 23520 ordthmeolem 23688 ptcmplem2 23940 tuslem 24154 dvnff 25825 bdayval 27560 noextend 27578 bdayfo 27589 vtxdgf 29399 fdifsuppconst 32612 ressupprn 32613 ofcfval3 34092 braew 34232 omsval 34284 sibfof 34331 sitmcl 34342 cndprobval 34424 tailf 36363 tailfb 36365 ismgmOLD 37844 dfcnvrefrels2 38519 dfcnvrefrels3 38520 rclexi 43604 rtrclexlem 43605 cnvrcl0 43614 dfrtrcl5 43618 relexpmulg 43699 relexp01min 43702 relexpxpmin 43706 unidmex 45044 caragenval 46491 caragenunidm 46506 itcoval0 48651 itcoval1 48652 isofnALT 49020 |
| Copyright terms: Public domain | W3C validator |