Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7584 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun1 4110 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5876 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3934 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5250 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
7 | 5, 6 | mpan 686 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 ⊆ wss 3891 ∪ cuni 4844 dom cdm 5588 ran crn 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: dmexd 7739 dmfex 7741 dmex 7745 iprc 7747 exse2 7751 xpexr2 7753 xpexcnv 7754 soex 7755 cnvexg 7758 coexg 7763 cofunexg 7778 offval3 7811 opabn1stprc 7884 suppval 7963 funsssuppss 7990 suppssOLD 7995 suppssov1 7998 suppssfv 8002 tposexg 8040 tfrlem12 8204 tfrlem13 8205 erexb 8497 f1vrnfibi 9065 oion 9256 ttrclexg 9442 fpwwe2lem3 10373 hashfn 14071 fundmge2nop0 14187 fun2dmnop0 14189 trclexlem 14686 relexp0g 14714 relexpsucnnr 14717 o1of2 15303 isofn 17468 ssclem 17512 ssc2 17515 ssctr 17518 subsubc 17549 resf1st 17590 resf2nd 17591 funcres 17592 dprddomprc 19584 dprdval0prc 19586 subgdmdprd 19618 dprd2da 19626 decpmatval0 21894 pmatcollpw3lem 21913 ordtbaslem 22320 ordtuni 22322 ordtbas2 22323 ordtbas 22324 ordttopon 22325 ordtopn1 22326 ordtopn2 22327 txindislem 22765 ordthmeolem 22933 ptcmplem2 23185 tuslem 23399 tuslemOLD 23400 dvnff 25068 vtxdgf 27819 fdifsuppconst 31002 ressupprn 31003 ofcfval3 32049 braew 32189 omsval 32239 sibfof 32286 sitmcl 32297 cndprobval 32379 hashfundm 33053 hashf1dmrn 33054 bdayval 33830 noextend 33848 bdayfo 33859 tailf 34543 tailfb 34545 ismgmOLD 35987 dfcnvrefrels2 36623 dfcnvrefrels3 36624 rclexi 41176 rtrclexlem 41177 cnvrcl0 41186 dfrtrcl5 41190 relexpmulg 41271 relexp01min 41274 relexpxpmin 41278 unidmex 42551 caragenval 43985 caragenunidm 44000 itcoval0 45960 itcoval1 45961 |
Copyright terms: Public domain | W3C validator |