| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7668 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7668 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4123 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5908 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3939 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5256 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∪ cuni 4854 dom cdm 5611 ran crn 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: dmexd 7828 dmfex 7830 dmex 7834 iprc 7836 exse2 7842 xpexr2 7844 xpexcnv 7845 soex 7846 cnvexg 7849 coexg 7854 cofunexg 7876 offval3 7909 opabn1stprc 7985 suppval 8087 funsssuppss 8115 suppssov1 8122 suppssov2 8123 suppssfv 8127 tposexg 8165 tfrlem12 8303 tfrlem13 8304 erexb 8642 f1vrnfibi 9221 oion 9417 ttrclexg 9608 fpwwe2lem3 10519 hashfn 14277 hashfundm 14344 hashf1dmrn 14345 fundmge2nop0 14404 fun2dmnop0 14406 trclexlem 14896 relexp0g 14924 relexpsucnnr 14927 o1of2 15515 isofn 17677 ssclem 17721 ssc2 17724 ssctr 17727 subsubc 17755 resf1st 17796 resf2nd 17797 funcres 17798 dprddomprc 19909 dprdval0prc 19911 subgdmdprd 19943 dprd2da 19951 decpmatval0 22674 pmatcollpw3lem 22693 ordtbaslem 23098 ordtuni 23100 ordtbas2 23101 ordtbas 23102 ordttopon 23103 ordtopn1 23104 ordtopn2 23105 txindislem 23543 ordthmeolem 23711 ptcmplem2 23963 tuslem 24176 dvnff 25847 bdayval 27582 noextend 27600 bdayfo 27611 vtxdgf 29445 fdifsuppconst 32662 ressupprn 32663 ofcfval3 34107 braew 34247 omsval 34298 sibfof 34345 sitmcl 34356 cndprobval 34438 tailf 36409 tailfb 36411 ismgmOLD 37890 dfcnvrefrels2 38565 dfcnvrefrels3 38566 rclexi 43648 rtrclexlem 43649 cnvrcl0 43658 dfrtrcl5 43662 relexpmulg 43743 relexp01min 43746 relexpxpmin 43750 unidmex 45087 caragenval 46531 caragenunidm 46546 itcoval0 48694 itcoval1 48695 isofnALT 49063 |
| Copyright terms: Public domain | W3C validator |