![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7775 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun1 4201 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5996 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 4018 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5341 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
7 | 5, 6 | mpan 689 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∪ cuni 4931 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: dmexd 7943 dmfex 7945 dmex 7949 iprc 7951 exse2 7957 xpexr2 7959 xpexcnv 7960 soex 7961 cnvexg 7964 coexg 7969 cofunexg 7989 offval3 8023 opabn1stprc 8099 suppval 8203 funsssuppss 8231 suppssov1 8238 suppssov2 8239 suppssfv 8243 tposexg 8281 tfrlem12 8445 tfrlem13 8446 erexb 8788 f1vrnfibi 9410 oion 9605 ttrclexg 9792 fpwwe2lem3 10702 hashfn 14424 hashfundm 14491 hashf1dmrn 14492 fundmge2nop0 14551 fun2dmnop0 14553 trclexlem 15043 relexp0g 15071 relexpsucnnr 15074 o1of2 15659 isofn 17836 ssclem 17880 ssc2 17883 ssctr 17886 subsubc 17917 resf1st 17958 resf2nd 17959 funcres 17960 dprddomprc 20044 dprdval0prc 20046 subgdmdprd 20078 dprd2da 20086 decpmatval0 22791 pmatcollpw3lem 22810 ordtbaslem 23217 ordtuni 23219 ordtbas2 23220 ordtbas 23221 ordttopon 23222 ordtopn1 23223 ordtopn2 23224 txindislem 23662 ordthmeolem 23830 ptcmplem2 24082 tuslem 24296 tuslemOLD 24297 dvnff 25979 bdayval 27711 noextend 27729 bdayfo 27740 vtxdgf 29507 fdifsuppconst 32701 ressupprn 32702 ofcfval3 34066 braew 34206 omsval 34258 sibfof 34305 sitmcl 34316 cndprobval 34398 tailf 36341 tailfb 36343 ismgmOLD 37810 dfcnvrefrels2 38484 dfcnvrefrels3 38485 rclexi 43577 rtrclexlem 43578 cnvrcl0 43587 dfrtrcl5 43591 relexpmulg 43672 relexp01min 43675 relexpxpmin 43679 unidmex 44952 caragenval 46414 caragenunidm 46429 itcoval0 48396 itcoval1 48397 |
Copyright terms: Public domain | W3C validator |