Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7571 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7571 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun1 4102 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5868 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3926 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5242 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
7 | 5, 6 | mpan 686 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∪ cuni 4836 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: dmexd 7726 dmfex 7728 dmex 7732 iprc 7734 exse2 7738 xpexr2 7740 xpexcnv 7741 soex 7742 cnvexg 7745 coexg 7750 cofunexg 7765 offval3 7798 opabn1stprc 7871 suppval 7950 funsssuppss 7977 suppssOLD 7982 suppssov1 7985 suppssfv 7989 tposexg 8027 tfrlem12 8191 tfrlem13 8192 erexb 8481 f1vrnfibi 9034 oion 9225 fpwwe2lem3 10320 hashfn 14018 fundmge2nop0 14134 fun2dmnop0 14136 trclexlem 14633 relexp0g 14661 relexpsucnnr 14664 o1of2 15250 isofn 17404 ssclem 17448 ssc2 17451 ssctr 17454 subsubc 17484 resf1st 17525 resf2nd 17526 funcres 17527 dprddomprc 19518 dprdval0prc 19520 subgdmdprd 19552 dprd2da 19560 decpmatval0 21821 pmatcollpw3lem 21840 ordtbaslem 22247 ordtuni 22249 ordtbas2 22250 ordtbas 22251 ordttopon 22252 ordtopn1 22253 ordtopn2 22254 txindislem 22692 ordthmeolem 22860 ptcmplem2 23112 tuslem 23326 tuslemOLD 23327 dvnff 24992 vtxdgf 27741 fdifsuppconst 30925 ressupprn 30926 ofcfval3 31970 braew 32110 omsval 32160 sibfof 32207 sitmcl 32218 cndprobval 32300 hashfundm 32974 hashf1dmrn 32975 ttrclexg 33709 bdayval 33778 noextend 33796 bdayfo 33807 tailf 34491 tailfb 34493 ismgmOLD 35935 dfcnvrefrels2 36571 dfcnvrefrels3 36572 rclexi 41112 rtrclexlem 41113 cnvrcl0 41122 dfrtrcl5 41126 relexpmulg 41207 relexp01min 41210 relexpxpmin 41214 unidmex 42487 caragenval 43921 caragenunidm 43936 itcoval0 45896 itcoval1 45897 |
Copyright terms: Public domain | W3C validator |