| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexg | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7732 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7732 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 4153 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5953 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3968 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5293 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 ∪ cuni 4883 dom cdm 5654 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: dmexd 7897 dmfex 7899 dmex 7903 iprc 7905 exse2 7911 xpexr2 7913 xpexcnv 7914 soex 7915 cnvexg 7918 coexg 7923 cofunexg 7945 offval3 7979 opabn1stprc 8055 suppval 8159 funsssuppss 8187 suppssov1 8194 suppssov2 8195 suppssfv 8199 tposexg 8237 tfrlem12 8401 tfrlem13 8402 erexb 8742 f1vrnfibi 9352 oion 9548 ttrclexg 9735 fpwwe2lem3 10645 hashfn 14391 hashfundm 14458 hashf1dmrn 14459 fundmge2nop0 14518 fun2dmnop0 14520 trclexlem 15011 relexp0g 15039 relexpsucnnr 15042 o1of2 15627 isofn 17786 ssclem 17830 ssc2 17833 ssctr 17836 subsubc 17864 resf1st 17905 resf2nd 17906 funcres 17907 dprddomprc 19981 dprdval0prc 19983 subgdmdprd 20015 dprd2da 20023 decpmatval0 22700 pmatcollpw3lem 22719 ordtbaslem 23124 ordtuni 23126 ordtbas2 23127 ordtbas 23128 ordttopon 23129 ordtopn1 23130 ordtopn2 23131 txindislem 23569 ordthmeolem 23737 ptcmplem2 23989 tuslem 24203 dvnff 25875 bdayval 27610 noextend 27628 bdayfo 27639 vtxdgf 29397 fdifsuppconst 32612 ressupprn 32613 ofcfval3 34079 braew 34219 omsval 34271 sibfof 34318 sitmcl 34329 cndprobval 34411 tailf 36339 tailfb 36341 ismgmOLD 37820 dfcnvrefrels2 38492 dfcnvrefrels3 38493 rclexi 43586 rtrclexlem 43587 cnvrcl0 43596 dfrtrcl5 43600 relexpmulg 43681 relexp01min 43684 relexpxpmin 43688 unidmex 45022 caragenval 46470 caragenunidm 46485 itcoval0 48590 itcoval1 48591 isofnALT 48949 |
| Copyright terms: Public domain | W3C validator |