![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexr | Structured version Visualization version GIF version |
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr | ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5014 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | eleq1 2894 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
3 | 1, 2 | mpbiri 250 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
4 | 3 | pm2.24d 149 | . . . 4 ⊢ (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
5 | 4 | a1d 25 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
6 | rnexg 7359 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
7 | rnxp 5805 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | eleq1d 2891 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
9 | 6, 8 | syl5ib 236 | . . . 4 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → 𝐵 ∈ V)) |
10 | 9 | a1dd 50 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
11 | 5, 10 | pm2.61ine 3082 | . 2 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
12 | 11 | orrd 894 | 1 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 ∅c0 4144 × cxp 5340 ran crn 5343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-rel 5349 df-cnv 5350 df-dm 5352 df-rn 5353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |