Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexr | Structured version Visualization version GIF version |
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr | ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
3 | 1, 2 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
4 | 3 | pm2.24d 151 | . . . 4 ⊢ (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
5 | 4 | a1d 25 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
6 | rnexg 7725 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
7 | rnxp 6062 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
9 | 6, 8 | syl5ib 243 | . . . 4 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → 𝐵 ∈ V)) |
10 | 9 | a1dd 50 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
11 | 5, 10 | pm2.61ine 3027 | . 2 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
12 | 11 | orrd 859 | 1 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 × cxp 5578 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |