MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr Structured version   Visualization version   GIF version

Theorem xpexr 7920
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 5301 . . . . . 6 ∅ ∈ V
2 eleq1 2817 . . . . . 6 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 258 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ V)
43pm2.24d 151 . . . 4 (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
54a1d 25 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
6 rnexg 7904 . . . . 5 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
7 rnxp 6168 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87eleq1d 2814 . . . . 5 (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V))
96, 8imbitrid 243 . . . 4 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶𝐵 ∈ V))
109a1dd 50 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
115, 10pm2.61ine 3021 . 2 ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
1211orrd 862 1 ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  c0 4318   × cxp 5670  ran crn 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator