| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexr | Structured version Visualization version GIF version | ||
| Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
| Ref | Expression |
|---|---|
| xpexr | ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | eleq1 2823 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 4 | 3 | pm2.24d 151 | . . . 4 ⊢ (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
| 5 | 4 | a1d 25 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
| 6 | rnexg 7903 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
| 7 | rnxp 6164 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
| 8 | 7 | eleq1d 2820 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
| 9 | 6, 8 | imbitrid 244 | . . . 4 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → 𝐵 ∈ V)) |
| 10 | 9 | a1dd 50 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))) |
| 11 | 5, 10 | pm2.61ine 3016 | . 2 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)) |
| 12 | 11 | orrd 863 | 1 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 × cxp 5657 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |