MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr Structured version   Visualization version   GIF version

Theorem xpexr 7903
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 5298 . . . . . 6 ∅ ∈ V
2 eleq1 2813 . . . . . 6 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 258 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ V)
43pm2.24d 151 . . . 4 (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
54a1d 25 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
6 rnexg 7889 . . . . 5 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
7 rnxp 6160 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87eleq1d 2810 . . . . 5 (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V))
96, 8imbitrid 243 . . . 4 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶𝐵 ∈ V))
109a1dd 50 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
115, 10pm2.61ine 3017 . 2 ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
1211orrd 860 1 ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  c0 4315   × cxp 5665  ran crn 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator