MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr Structured version   Visualization version   GIF version

Theorem xpexr 7919
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 5282 . . . . . 6 ∅ ∈ V
2 eleq1 2823 . . . . . 6 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 258 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ V)
43pm2.24d 151 . . . 4 (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
54a1d 25 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
6 rnexg 7903 . . . . 5 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
7 rnxp 6164 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87eleq1d 2820 . . . . 5 (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V))
96, 8imbitrid 244 . . . 4 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶𝐵 ∈ V))
109a1dd 50 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
115, 10pm2.61ine 3016 . 2 ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
1211orrd 863 1 ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313   × cxp 5657  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator