MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr Structured version   Visualization version   GIF version

Theorem xpexr 7941
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 5306 . . . . . 6 ∅ ∈ V
2 eleq1 2828 . . . . . 6 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 258 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ V)
43pm2.24d 151 . . . 4 (𝐴 = ∅ → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
54a1d 25 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
6 rnexg 7925 . . . . 5 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
7 rnxp 6189 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87eleq1d 2825 . . . . 5 (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V))
96, 8imbitrid 244 . . . 4 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶𝐵 ∈ V))
109a1dd 50 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V)))
115, 10pm2.61ine 3024 . 2 ((𝐴 × 𝐵) ∈ 𝐶 → (¬ 𝐴 ∈ V → 𝐵 ∈ V))
1211orrd 863 1 ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  c0 4332   × cxp 5682  ran crn 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rn 5695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator