Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq23 Structured version   Visualization version   GIF version

Theorem f1oeq23 6582
 Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 6580 . 2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2 f1oeq3 6581 . 2 (𝐶 = 𝐷 → (𝐹:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
31, 2sylan9bb 513 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  –1-1-onto→wf1o 6323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-in 3888  df-ss 3898  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331 This theorem is referenced by:  enfixsn  8611  ackbij2lem2  9653  seqf1o  13409  eulerthlem2  16111  isgim  18397  islmim  19830  fpwrelmapffs  30503  hgt750lemg  32047  poimirlem3  35076  poimirlem15  35088  eldioph2lem1  39716  fundcmpsurbijinj  43942  isomushgr  44359
 Copyright terms: Public domain W3C validator