MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq23 Structured version   Visualization version   GIF version

Theorem f1oeq23 6652
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 6650 . 2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2 f1oeq3 6651 . 2 (𝐶 = 𝐷 → (𝐹:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
31, 2sylan9bb 513 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  1-1-ontowf1o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387
This theorem is referenced by:  f1ofvswap  7116  enfixsn  8754  ackbij2lem2  9854  seqf1o  13617  eulerthlem2  16335  isgim  18666  islmim  20099  fpwrelmapffs  30789  hgt750lemg  32346  poimirlem3  35517  poimirlem15  35529  eldioph2lem1  40285  fundcmpsurbijinj  44535  isomushgr  44951
  Copyright terms: Public domain W3C validator