![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq23 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
Ref | Expression |
---|---|
f1oeq23 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6851 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
2 | f1oeq3 6852 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1ofvswap 7342 enfixsn 9147 ackbij2lem2 10308 seqf1o 14094 eulerthlem2 16829 isgim 19302 islmim 21084 fpwrelmapffs 32748 wrdpmcl 32904 1arithidomlem2 33529 1arithidom 33530 hgt750lemg 34631 poimirlem3 37583 poimirlem15 37595 eldioph2lem1 42716 fundcmpsurbijinj 47284 gricushgr 47770 isgrlim 47806 |
Copyright terms: Public domain | W3C validator |