![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq23 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
Ref | Expression |
---|---|
f1oeq23 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6819 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
2 | f1oeq3 6820 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) | |
3 | 1, 2 | sylan9bb 511 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 –1-1-onto→wf1o 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3954 df-ss 3964 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: f1ofvswap 7299 enfixsn 9077 ackbij2lem2 10231 seqf1o 14005 eulerthlem2 16711 isgim 19130 islmim 20661 fpwrelmapffs 31937 hgt750lemg 33604 poimirlem3 36429 poimirlem15 36441 eldioph2lem1 41431 fundcmpsurbijinj 46013 isomushgr 46429 |
Copyright terms: Public domain | W3C validator |