| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq23 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
| Ref | Expression |
|---|---|
| f1oeq23 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 6789 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 2 | f1oeq3 6790 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1ofvswap 7281 enfixsn 9050 ackbij2lem2 10192 seqf1o 14008 eulerthlem2 16752 isgim 19194 islmim 20969 fpwrelmapffs 32657 wrdpmcl 32859 1arithidomlem2 33507 1arithidom 33508 hgt750lemg 34645 poimirlem3 37617 poimirlem15 37629 eldioph2lem1 42748 fundcmpsurbijinj 47411 gricushgr 47917 isgrlim 47981 |
| Copyright terms: Public domain | W3C validator |