MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq23 Structured version   Visualization version   GIF version

Theorem f1oeq23 6825
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 6823 . 2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2 f1oeq3 6824 . 2 (𝐶 = 𝐷 → (𝐹:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
31, 2sylan9bb 511 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  1-1-ontowf1o 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by:  f1ofvswap  7304  enfixsn  9081  ackbij2lem2  10235  seqf1o  14009  eulerthlem2  16715  isgim  19136  islmim  20673  fpwrelmapffs  31990  hgt750lemg  33697  poimirlem3  36539  poimirlem15  36551  eldioph2lem1  41546  fundcmpsurbijinj  46126  isomushgr  46542
  Copyright terms: Public domain W3C validator