MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq23 Structured version   Visualization version   GIF version

Theorem f1oeq23 6853
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 6851 . 2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2 f1oeq3 6852 . 2 (𝐶 = 𝐷 → (𝐹:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1ofvswap  7342  enfixsn  9147  ackbij2lem2  10308  seqf1o  14094  eulerthlem2  16829  isgim  19302  islmim  21084  fpwrelmapffs  32748  wrdpmcl  32904  1arithidomlem2  33529  1arithidom  33530  hgt750lemg  34631  poimirlem3  37583  poimirlem15  37595  eldioph2lem1  42716  fundcmpsurbijinj  47284  gricushgr  47770  isgrlim  47806
  Copyright terms: Public domain W3C validator