| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq23 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
| Ref | Expression |
|---|---|
| f1oeq23 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 6807 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 2 | f1oeq3 6808 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1ofvswap 7299 enfixsn 9095 ackbij2lem2 10253 seqf1o 14061 eulerthlem2 16801 isgim 19245 islmim 21020 fpwrelmapffs 32711 wrdpmcl 32913 1arithidomlem2 33551 1arithidom 33552 hgt750lemg 34686 poimirlem3 37647 poimirlem15 37659 eldioph2lem1 42783 fundcmpsurbijinj 47424 gricushgr 47930 isgrlim 47994 |
| Copyright terms: Public domain | W3C validator |