Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq23 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
Ref | Expression |
---|---|
f1oeq23 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6705 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
2 | f1oeq3 6706 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) | |
3 | 1, 2 | sylan9bb 510 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1ofvswap 7178 enfixsn 8868 ackbij2lem2 9996 seqf1o 13764 eulerthlem2 16483 isgim 18878 islmim 20324 fpwrelmapffs 31069 hgt750lemg 32634 poimirlem3 35780 poimirlem15 35792 eldioph2lem1 40582 fundcmpsurbijinj 44862 isomushgr 45278 |
Copyright terms: Public domain | W3C validator |