Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem15 Structured version   Visualization version   GIF version

Theorem poimirlem15 36093
Description: Lemma for poimir 36111, that the face in poimirlem22 36100 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem15.3 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
Assertion
Ref Expression
poimirlem15 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem15
StepHypRef Expression
1 poimirlem22.2 . . . . . 6 (𝜑𝑇𝑆)
2 elrabi 3639 . . . . . . 7 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3 poimirlem22.s . . . . . . 7 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
42, 3eleq2s 2856 . . . . . 6 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
51, 4syl 17 . . . . 5 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
6 xp1st 7953 . . . . 5 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
7 xp1st 7953 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
85, 6, 73syl 18 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
9 xp2nd 7954 . . . . . . . 8 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
105, 6, 93syl 18 . . . . . . 7 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 fvex 6855 . . . . . . . 8 (2nd ‘(1st𝑇)) ∈ V
12 f1oeq1 6772 . . . . . . . 8 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
1311, 12elab 3630 . . . . . . 7 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
1410, 13sylib 217 . . . . . 6 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
15 poimirlem15.3 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
16 elfznn 13470 . . . . . . . . . . . . 13 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
1715, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) ∈ ℕ)
1817nnred 12168 . . . . . . . . . . 11 (𝜑 → (2nd𝑇) ∈ ℝ)
1918ltp1d 12085 . . . . . . . . . . 11 (𝜑 → (2nd𝑇) < ((2nd𝑇) + 1))
2018, 19ltned 11291 . . . . . . . . . 10 (𝜑 → (2nd𝑇) ≠ ((2nd𝑇) + 1))
2120necomd 2999 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ≠ (2nd𝑇))
22 fvex 6855 . . . . . . . . . . 11 (2nd𝑇) ∈ V
23 ovex 7390 . . . . . . . . . . 11 ((2nd𝑇) + 1) ∈ V
24 f1oprg 6829 . . . . . . . . . . 11 ((((2nd𝑇) ∈ V ∧ ((2nd𝑇) + 1) ∈ V) ∧ (((2nd𝑇) + 1) ∈ V ∧ (2nd𝑇) ∈ V)) → (((2nd𝑇) ≠ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≠ (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)}))
2522, 23, 23, 22, 24mp4an 691 . . . . . . . . . 10 (((2nd𝑇) ≠ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≠ (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)})
2620, 21, 25syl2anc 584 . . . . . . . . 9 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)})
27 prcom 4693 . . . . . . . . . 10 {((2nd𝑇) + 1), (2nd𝑇)} = {(2nd𝑇), ((2nd𝑇) + 1)}
28 f1oeq3 6774 . . . . . . . . . 10 ({((2nd𝑇) + 1), (2nd𝑇)} = {(2nd𝑇), ((2nd𝑇) + 1)} → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} ↔ {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)}))
2927, 28ax-mp 5 . . . . . . . . 9 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} ↔ {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)})
3026, 29sylib 217 . . . . . . . 8 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)})
31 f1oi 6822 . . . . . . . 8 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
32 disjdif 4431 . . . . . . . . 9 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅
33 f1oun 6803 . . . . . . . . 9 ((({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∧ (({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅ ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
3432, 32, 33mpanr12 703 . . . . . . . 8 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
3530, 31, 34sylancl 586 . . . . . . 7 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
36 poimir.0 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
3736nncnd 12169 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
38 npcan1 11580 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
4036nnzd 12526 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
41 peano2zm 12546 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4240, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ ℤ)
43 uzid 12778 . . . . . . . . . . . . . 14 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
44 peano2uz 12826 . . . . . . . . . . . . . 14 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
4542, 43, 443syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
4639, 45eqeltrrd 2839 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
47 fzss2 13481 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
4846, 47syl 17 . . . . . . . . . . 11 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
4948, 15sseldd 3945 . . . . . . . . . 10 (𝜑 → (2nd𝑇) ∈ (1...𝑁))
5017peano2nnd 12170 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ∈ ℕ)
5142zred 12607 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
5236nnred 12168 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
53 elfzle2 13445 . . . . . . . . . . . . . 14 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≤ (𝑁 − 1))
5415, 53syl 17 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ≤ (𝑁 − 1))
5552ltm1d 12087 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) < 𝑁)
5618, 51, 52, 54, 55lelttrd 11313 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) < 𝑁)
5717nnzd 12526 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ∈ ℤ)
58 zltp1le 12553 . . . . . . . . . . . . 13 (((2nd𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑇) < 𝑁 ↔ ((2nd𝑇) + 1) ≤ 𝑁))
5957, 40, 58syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑇) < 𝑁 ↔ ((2nd𝑇) + 1) ≤ 𝑁))
6056, 59mpbid 231 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ≤ 𝑁)
61 fznn 13509 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (((2nd𝑇) + 1) ∈ (1...𝑁) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
6240, 61syl 17 . . . . . . . . . . 11 (𝜑 → (((2nd𝑇) + 1) ∈ (1...𝑁) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
6350, 60, 62mpbir2and 711 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ∈ (1...𝑁))
64 prssi 4781 . . . . . . . . . 10 (((2nd𝑇) ∈ (1...𝑁) ∧ ((2nd𝑇) + 1) ∈ (1...𝑁)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁))
6549, 63, 64syl2anc 584 . . . . . . . . 9 (𝜑 → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁))
66 undif 4441 . . . . . . . . 9 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁))
6765, 66sylib 217 . . . . . . . 8 (𝜑 → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁))
68 f1oeq23 6775 . . . . . . . 8 ((({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁) ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ↔ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)))
6967, 67, 68syl2anc 584 . . . . . . 7 (𝜑 → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ↔ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)))
7035, 69mpbid 231 . . . . . 6 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁))
71 f1oco 6807 . . . . . 6 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
7214, 70, 71syl2anc 584 . . . . 5 (𝜑 → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
73 prex 5389 . . . . . . . 8 {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∈ V
74 ovex 7390 . . . . . . . . 9 (1...𝑁) ∈ V
75 difexg 5284 . . . . . . . . 9 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∈ V)
76 resiexg 7851 . . . . . . . . 9 (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∈ V → ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∈ V)
7774, 75, 76mp2b 10 . . . . . . . 8 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∈ V
7873, 77unex 7680 . . . . . . 7 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) ∈ V
7911, 78coex 7867 . . . . . 6 ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ V
80 f1oeq1 6772 . . . . . 6 (𝑓 = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁)))
8179, 80elab 3630 . . . . 5 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
8272, 81sylibr 233 . . . 4 (𝜑 → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
83 opelxpi 5670 . . . 4 (((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) ∧ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
848, 82, 83syl2anc 584 . . 3 (𝜑 → ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
85 fz1ssfz0 13537 . . . . 5 (1...𝑁) ⊆ (0...𝑁)
8648, 85sstrdi 3956 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ (0...𝑁))
8786, 15sseldd 3945 . . 3 (𝜑 → (2nd𝑇) ∈ (0...𝑁))
88 opelxpi 5670 . . 3 ((⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (2nd𝑇) ∈ (0...𝑁)) → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8984, 87, 88syl2anc 584 . 2 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
90 fveq2 6842 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
9190breq2d 5117 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
9291ifbid 4509 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
9392csbeq1d 3859 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
94 2fveq3 6847 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
95 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
9695imaeq1d 6012 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
9796xpeq1d 5662 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
9895imaeq1d 6012 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
9998xpeq1d 5662 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
10097, 99uneq12d 4124 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
10194, 100oveq12d 7375 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
102101csbeq2dv 3862 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
10393, 102eqtrd 2776 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
104103mpteq2dv 5207 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
105104eqeq2d 2747 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
106105, 3elrab2 3648 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
107106simprbi 497 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1081, 107syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
109 imaco 6203 . . . . . . . . . 10 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)))
110 f1ofn 6785 . . . . . . . . . . . . . . . 16 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
11126, 110syl 17 . . . . . . . . . . . . . . 15 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
112111ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
113 incom 4161 . . . . . . . . . . . . . . 15 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
114 elfznn0 13534 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
115114nn0red 12474 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
116 ltnle 11234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (2nd𝑇) ∈ ℝ) → (𝑦 < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ 𝑦))
117115, 18, 116syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ 𝑦))
118117biimpa 477 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ (2nd𝑇) ≤ 𝑦)
119 elfzle2 13445 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ (1...𝑦) → (2nd𝑇) ≤ 𝑦)
120118, 119nsyl 140 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ (2nd𝑇) ∈ (1...𝑦))
121 disjsn 4672 . . . . . . . . . . . . . . . . . 18 (((1...𝑦) ∩ {(2nd𝑇)}) = ∅ ↔ ¬ (2nd𝑇) ∈ (1...𝑦))
122120, 121sylibr 233 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {(2nd𝑇)}) = ∅)
123115ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 ∈ ℝ)
12418ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ∈ ℝ)
12550nnred 12168 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑇) + 1) ∈ ℝ)
126125ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ∈ ℝ)
127 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 < (2nd𝑇))
12819ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) < ((2nd𝑇) + 1))
129123, 124, 126, 127, 128lttrd 11316 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 < ((2nd𝑇) + 1))
130 ltnle 11234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ ((2nd𝑇) + 1) ∈ ℝ) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
131115, 125, 130syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
132131adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
133129, 132mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ ((2nd𝑇) + 1) ≤ 𝑦)
134 elfzle2 13445 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑇) + 1) ∈ (1...𝑦) → ((2nd𝑇) + 1) ≤ 𝑦)
135133, 134nsyl 140 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ ((2nd𝑇) + 1) ∈ (1...𝑦))
136 disjsn 4672 . . . . . . . . . . . . . . . . . 18 (((1...𝑦) ∩ {((2nd𝑇) + 1)}) = ∅ ↔ ¬ ((2nd𝑇) + 1) ∈ (1...𝑦))
137135, 136sylibr 233 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {((2nd𝑇) + 1)}) = ∅)
138122, 137uneq12d 4124 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)})) = (∅ ∪ ∅))
139 df-pr 4589 . . . . . . . . . . . . . . . . . 18 {(2nd𝑇), ((2nd𝑇) + 1)} = ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})
140139ineq2i 4169 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...𝑦) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
141 indi 4233 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)}))
142140, 141eqtr2i 2765 . . . . . . . . . . . . . . . 16 (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)})) = ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
143 un0 4350 . . . . . . . . . . . . . . . 16 (∅ ∪ ∅) = ∅
144138, 142, 1433eqtr3g 2799 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
145113, 144eqtrid 2788 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ∅)
146 fnimadisj 6633 . . . . . . . . . . . . . 14 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ∅) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) = ∅)
147112, 145, 146syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) = ∅)
14839adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
149 elfzuz3 13438 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
150 peano2uz 12826 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
151149, 150syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
152151adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
153148, 152eqeltrrd 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝑦))
154 fzss2 13481 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑦) → (1...𝑦) ⊆ (1...𝑁))
155 reldisj 4411 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ⊆ (1...𝑁) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
157156adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
158144, 157mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
159 resiima 6028 . . . . . . . . . . . . . 14 ((1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)) = (1...𝑦))
160158, 159syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)) = (1...𝑦))
161147, 160uneq12d 4124 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦))) = (∅ ∪ (1...𝑦)))
162 imaundir 6103 . . . . . . . . . . . 12 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)))
163 uncom 4113 . . . . . . . . . . . . 13 (∅ ∪ (1...𝑦)) = ((1...𝑦) ∪ ∅)
164 un0 4350 . . . . . . . . . . . . 13 ((1...𝑦) ∪ ∅) = (1...𝑦)
165163, 164eqtr2i 2765 . . . . . . . . . . . 12 (1...𝑦) = (∅ ∪ (1...𝑦))
166161, 162, 1653eqtr4g 2801 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)) = (1...𝑦))
167166imaeq2d 6013 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦))) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
168109, 167eqtrid 2788 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
169168xpeq1d 5662 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
170 imaco 6203 . . . . . . . . . 10 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)))
171 imaundir 6103 . . . . . . . . . . . . 13 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)))
172 imassrn 6024 . . . . . . . . . . . . . . . . 17 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}
173172a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
174 fnima 6631 . . . . . . . . . . . . . . . . . . 19 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
17526, 110, 1743syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
176175ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
177 elfzelz 13441 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ)
178 zltp1le 12553 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ (2nd𝑇) ∈ ℤ) → (𝑦 < (2nd𝑇) ↔ (𝑦 + 1) ≤ (2nd𝑇)))
179177, 57, 178syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) ↔ (𝑦 + 1) ≤ (2nd𝑇)))
180179biimpa 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 + 1) ≤ (2nd𝑇))
18118, 52, 56ltled 11303 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2nd𝑇) ≤ 𝑁)
182181ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ≤ 𝑁)
18357adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) ∈ ℤ)
184 nn0p1nn 12452 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
185114, 184syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ)
186185nnzd 12526 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ)
187186adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ ℤ)
18840adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℤ)
189 elfz 13430 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑇) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
190183, 187, 188, 189syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
191190adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
192180, 182, 191mpbir2and 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ∈ ((𝑦 + 1)...𝑁))
193 1red 11156 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 1 ∈ ℝ)
194 ltle 11243 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ (2nd𝑇) ∈ ℝ) → (𝑦 < (2nd𝑇) → 𝑦 ≤ (2nd𝑇)))
195115, 18, 194syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) → 𝑦 ≤ (2nd𝑇)))
196195imp 407 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 ≤ (2nd𝑇))
197123, 124, 193, 196leadd1dd 11769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 + 1) ≤ ((2nd𝑇) + 1))
19860ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ≤ 𝑁)
19957peano2zd 12610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2nd𝑇) + 1) ∈ ℤ)
200199adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) + 1) ∈ ℤ)
201 elfz 13430 . . . . . . . . . . . . . . . . . . . . . 22 ((((2nd𝑇) + 1) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
202200, 187, 188, 201syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
203202adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
204197, 198, 203mpbir2and 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁))
205 prssi 4781 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ∧ ((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁))
206192, 204, 205syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁))
207 imass2 6054 . . . . . . . . . . . . . . . . . 18 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
208206, 207syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
209176, 208eqsstrrd 3983 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
210173, 209eqssd 3961 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
211 f1ofo 6791 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–onto→{((2nd𝑇) + 1), (2nd𝑇)})
212 forn 6759 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–onto→{((2nd𝑇) + 1), (2nd𝑇)} → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {((2nd𝑇) + 1), (2nd𝑇)})
21326, 211, 2123syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {((2nd𝑇) + 1), (2nd𝑇)})
214213, 27eqtrdi 2792 . . . . . . . . . . . . . . . 16 (𝜑 → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
215214ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
216210, 215eqtrd 2776 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) = {(2nd𝑇), ((2nd𝑇) + 1)})
217 undif 4441 . . . . . . . . . . . . . . . . 17 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((𝑦 + 1)...𝑁))
218206, 217sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((𝑦 + 1)...𝑁))
219218imaeq2d 6013 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)))
220 fnresi 6630 . . . . . . . . . . . . . . . . . . 19 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
221 disjdifr 4432 . . . . . . . . . . . . . . . . . . 19 (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅
222 fnimadisj 6633 . . . . . . . . . . . . . . . . . . 19 ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∧ (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
223220, 221, 222mp2an 690 . . . . . . . . . . . . . . . . . 18 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅
224223a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
225 nnuz 12806 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
226185, 225eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
227 fzss1 13480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 + 1) ∈ (ℤ‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
228226, 227syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
229228ssdifd 4100 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0...(𝑁 − 1)) → (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
230 resiima 6028 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
231229, 230syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...(𝑁 − 1)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
232231ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
233224, 232uneq12d 4124 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
234 imaundi 6102 . . . . . . . . . . . . . . . 16 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
235 uncom 4113 . . . . . . . . . . . . . . . . 17 (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅)
236 un0 4350 . . . . . . . . . . . . . . . . 17 ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
237235, 236eqtr2i 2765 . . . . . . . . . . . . . . . 16 (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
238233, 234, 2373eqtr4g 2801 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
239219, 238eqtr3d 2778 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
240216, 239uneq12d 4124 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
241171, 240eqtrid 2788 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
242241, 218eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = ((𝑦 + 1)...𝑁))
243242imaeq2d 6013 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
244170, 243eqtrid 2788 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
245244xpeq1d 5662 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
246169, 245uneq12d 4124 . . . . . . 7 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
247246oveq2d 7373 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
248 iftrue 4492 . . . . . . . . 9 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑦)
249248csbeq1d 3859 . . . . . . . 8 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
250 vex 3449 . . . . . . . . 9 𝑦 ∈ V
251 oveq2 7365 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
252251imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)))
253252xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}))
254 oveq1 7364 . . . . . . . . . . . . . 14 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
255254oveq1d 7372 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
256255imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)))
257256xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))
258253, 257uneq12d 4124 . . . . . . . . . 10 (𝑗 = 𝑦 → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})))
259258oveq2d 7373 . . . . . . . . 9 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
260250, 259csbie 3891 . . . . . . . 8 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})))
261249, 260eqtrdi 2792 . . . . . . 7 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
262261adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
263248csbeq1d 3859 . . . . . . . 8 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
264251imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
265264xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
266255imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
267266xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
268265, 267uneq12d 4124 . . . . . . . . . 10 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
269268oveq2d 7373 . . . . . . . . 9 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
270250, 269csbie 3891 . . . . . . . 8 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
271263, 270eqtrdi 2792 . . . . . . 7 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
272271adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
273247, 262, 2723eqtr4d 2786 . . . . 5 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
274 lenlt 11233 . . . . . . . . . 10 (((2nd𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
27518, 115, 274syl2an 596 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
276275biimpar 478 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → (2nd𝑇) ≤ 𝑦)
277 imaco 6203 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))))
278 imaundir 6103 . . . . . . . . . . . . . 14 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))))
279 imassrn 6024 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}
280279a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
281175ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
28217ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ ℕ)
28318ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ ℝ)
284115ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 ∈ ℝ)
285185nnred 12168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ)
286285ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (𝑦 + 1) ∈ ℝ)
287 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ≤ 𝑦)
288115lep1d 12086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑦 + 1))
289288ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 ≤ (𝑦 + 1))
290283, 284, 286, 287, 289letrd 11312 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ≤ (𝑦 + 1))
291 fznn 13509 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + 1) ∈ ℤ → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
292186, 291syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
293292ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
294282, 290, 293mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ (1...(𝑦 + 1)))
29550ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ ℕ)
296 1red 11156 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 1 ∈ ℝ)
297283, 284, 296, 287leadd1dd 11769 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ≤ (𝑦 + 1))
298 fznn 13509 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + 1) ∈ ℤ → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
299186, 298syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
300299ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
301295, 297, 300mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)))
302 prssi 4781 . . . . . . . . . . . . . . . . . . . 20 (((2nd𝑇) ∈ (1...(𝑦 + 1)) ∧ ((2nd𝑇) + 1) ∈ (1...(𝑦 + 1))) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)))
303294, 301, 302syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)))
304 imass2 6054 . . . . . . . . . . . . . . . . . . 19 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
305303, 304syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
306281, 305eqsstrrd 3983 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
307280, 306eqssd 3961 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
308214ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
309307, 308eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) = {(2nd𝑇), ((2nd𝑇) + 1)})
310 undif 4441 . . . . . . . . . . . . . . . . . 18 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...(𝑦 + 1)))
311303, 310sylib 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...(𝑦 + 1)))
312311imaeq2d 6013 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))))
313223a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
314 eluzp1p1 12791 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
315149, 314syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
316315adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
317148, 316eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
318 fzss2 13481 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
319317, 318syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
320319ssdifd 4100 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
321320adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
322 resiima 6028 . . . . . . . . . . . . . . . . . . 19 (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
323321, 322syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
324313, 323uneq12d 4124 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
325 imaundi 6102 . . . . . . . . . . . . . . . . 17 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
326 uncom 4113 . . . . . . . . . . . . . . . . . 18 (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅)
327 un0 4350 . . . . . . . . . . . . . . . . . 18 (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
328326, 327eqtr2i 2765 . . . . . . . . . . . . . . . . 17 ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
329324, 325, 3283eqtr4g 2801 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
330312, 329eqtr3d 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
331309, 330uneq12d 4124 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1)))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
332278, 331eqtrid 2788 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
333332, 311eqtrd 2776 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = (1...(𝑦 + 1)))
334333imaeq2d 6013 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1)))) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
335277, 334eqtrid 2788 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
336335xpeq1d 5662 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
337 imaco 6203 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)))
338111ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
339 incom 4161 . . . . . . . . . . . . . . . 16 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
340125ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ ℝ)
341185peano2nnd 12170 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ)
342341nnred 12168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℝ)
343342ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((𝑦 + 1) + 1) ∈ ℝ)
34419ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < ((2nd𝑇) + 1))
345115ltp1d 12085 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1))
346345ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 < (𝑦 + 1))
347283, 284, 286, 287, 346lelttrd 11313 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < (𝑦 + 1))
348283, 286, 296, 347ltadd1dd 11766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) < ((𝑦 + 1) + 1))
349283, 340, 343, 344, 348lttrd 11316 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < ((𝑦 + 1) + 1))
350 ltnle 11234 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd𝑇) ∈ ℝ ∧ ((𝑦 + 1) + 1) ∈ ℝ) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
35118, 342, 350syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
352351adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
353349, 352mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇))
354 elfzle1 13444 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ (2nd𝑇))
355353, 354nsyl 140 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ (2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁))
356 disjsn 4672 . . . . . . . . . . . . . . . . . . 19 (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) = ∅ ↔ ¬ (2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁))
357355, 356sylibr 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) = ∅)
358 ltnle 11234 . . . . . . . . . . . . . . . . . . . . . . 23 ((((2nd𝑇) + 1) ∈ ℝ ∧ ((𝑦 + 1) + 1) ∈ ℝ) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
359125, 342, 358syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
360359adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
361348, 360mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1))
362 elfzle1 13444 . . . . . . . . . . . . . . . . . . . 20 (((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1))
363361, 362nsyl 140 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁))
364 disjsn 4672 . . . . . . . . . . . . . . . . . . 19 (((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}) = ∅ ↔ ¬ ((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁))
365363, 364sylibr 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}) = ∅)
366357, 365uneq12d 4124 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)})) = (∅ ∪ ∅))
367139ineq2i 4169 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((((𝑦 + 1) + 1)...𝑁) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
368 indi 4233 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}))
369367, 368eqtr2i 2765 . . . . . . . . . . . . . . . . 17 (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)})) = ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
370366, 369, 1433eqtr3g 2799 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
371339, 370eqtrid 2788 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅)
372 fnimadisj 6633 . . . . . . . . . . . . . . 15 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) = ∅)
373338, 371, 372syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) = ∅)
374341, 225eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
375 fzss1 13480 . . . . . . . . . . . . . . . . . 18 (((𝑦 + 1) + 1) ∈ (ℤ‘1) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁))
376 reldisj 4411 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
377374, 375, 3763syl 18 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
378377ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
379370, 378mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
380 resiima 6028 . . . . . . . . . . . . . . 15 ((((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
381379, 380syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
382373, 381uneq12d 4124 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁))) = (∅ ∪ (((𝑦 + 1) + 1)...𝑁)))
383 imaundir 6103 . . . . . . . . . . . . 13 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)))
384 uncom 4113 . . . . . . . . . . . . . 14 (∅ ∪ (((𝑦 + 1) + 1)...𝑁)) = ((((𝑦 + 1) + 1)...𝑁) ∪ ∅)
385 un0 4350 . . . . . . . . . . . . . 14 ((((𝑦 + 1) + 1)...𝑁) ∪ ∅) = (((𝑦 + 1) + 1)...𝑁)
386384, 385eqtr2i 2765 . . . . . . . . . . . . 13 (((𝑦 + 1) + 1)...𝑁) = (∅ ∪ (((𝑦 + 1) + 1)...𝑁))
387382, 383, 3863eqtr4g 2801 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
388387imaeq2d 6013 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
389337, 388eqtrid 2788 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
390389xpeq1d 5662 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
391336, 390uneq12d 4124 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
392276, 391syldan 591 . . . . . . 7 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
393392oveq2d 7373 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
394 iffalse 4495 . . . . . . . . 9 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1))
395394csbeq1d 3859 . . . . . . . 8 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
396 ovex 7390 . . . . . . . . 9 (𝑦 + 1) ∈ V
397 oveq2 7365 . . . . . . . . . . . . 13 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
398397imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))))
399398xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}))
400 oveq1 7364 . . . . . . . . . . . . . 14 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
401400oveq1d 7372 . . . . . . . . . . . . 13 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
402401imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)))
403402xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
404399, 403uneq12d 4124 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
405404oveq2d 7373 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
406396, 405csbie 3891 . . . . . . . 8 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
407395, 406eqtrdi 2792 . . . . . . 7 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
408407adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
409394csbeq1d 3859 . . . . . . . 8 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
410397imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
411410xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
412401imaeq2d 6013 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
413412xpeq1d 5662 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
414411, 413uneq12d 4124 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
415414oveq2d 7373 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
416396, 415csbie 3891 . . . . . . . 8 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
417409, 416eqtrdi 2792 . . . . . . 7 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
418417adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
419393, 408, 4183eqtr4d 2786 . . . . 5 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
420273, 419pm2.61dan 811 . . . 4 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
421420mpteq2dva 5205 . . 3 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
422108, 421eqtr4d 2779 . 2 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))))
423 opex 5421 . . . . . . 7 ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ V
424423, 22op1std 7931 . . . . . 6 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩)
425423, 22op2ndd 7932 . . . . . 6 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (2nd𝑡) = (2nd𝑇))
426 breq2 5109 . . . . . . . . 9 ((2nd𝑡) = (2nd𝑇) → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
427426ifbid 4509 . . . . . . . 8 ((2nd𝑡) = (2nd𝑇) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
428427csbeq1d 3859 . . . . . . 7 ((2nd𝑡) = (2nd𝑇) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
429 fvex 6855 . . . . . . . . . 10 (1st ‘(1st𝑇)) ∈ V
430429, 79op1std 7931 . . . . . . . . 9 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
431429, 79op2ndd 7932 . . . . . . . . 9 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
432 id 22 . . . . . . . . . 10 ((1st ‘(1st𝑡)) = (1st ‘(1st𝑇)) → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
433 imaeq1 6008 . . . . . . . . . . . 12 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)))
434433xpeq1d 5662 . . . . . . . . . . 11 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}))
435 imaeq1 6008 . . . . . . . . . . . 12 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)))
436435xpeq1d 5662 . . . . . . . . . . 11 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))
437434, 436uneq12d 4124 . . . . . . . . . 10 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))
438432, 437oveqan12d 7376 . . . . . . . . 9 (((1st ‘(1st𝑡)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
439430, 431, 438syl2anc 584 . . . . . . . 8 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
440439csbeq2dv 3862 . . . . . . 7 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
441428, 440sylan9eqr 2798 . . . . . 6 (((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∧ (2nd𝑡) = (2nd𝑇)) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
442424, 425, 441syl2anc 584 . . . . 5 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
443442mpteq2dv 5207 . . . 4 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))))
444443eqeq2d 2747 . . 3 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
445444, 3elrab2 3648 . 2 (⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆 ↔ (⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
44689, 422, 445sylanbrc 583 1 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2943  {crab 3407  Vcvv 3445  csb 3855  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  cmpt 5188   I cid 5530   × cxp 5631  ran crn 5634  cres 5635  cima 5636  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  f cof 7615  1st c1st 7919  2nd c2nd 7920  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  poimirlem22  36100
  Copyright terms: Public domain W3C validator