Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → 𝑋 ≈ 𝑌) |
2 | | bren 8743 |
. . 3
⊢ (𝑋 ≈ 𝑌 ↔ ∃𝑔 𝑔:𝑋–1-1-onto→𝑌) |
3 | 1, 2 | sylib 217 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → ∃𝑔 𝑔:𝑋–1-1-onto→𝑌) |
4 | | relen 8738 |
. . . . . . . 8
⊢ Rel
≈ |
5 | 4 | brrelex2i 5644 |
. . . . . . 7
⊢ (𝑋 ≈ 𝑌 → 𝑌 ∈ V) |
6 | 5 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → 𝑌 ∈ V) |
7 | 6 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → 𝑌 ∈ V) |
8 | | f1of 6716 |
. . . . . . 7
⊢ (𝑔:𝑋–1-1-onto→𝑌 → 𝑔:𝑋⟶𝑌) |
9 | 8 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → 𝑔:𝑋⟶𝑌) |
10 | | simpl1 1190 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → 𝐴 ∈ 𝑋) |
11 | 9, 10 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → (𝑔‘𝐴) ∈ 𝑌) |
12 | | simpl2 1191 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → 𝐵 ∈ 𝑌) |
13 | | difsnen 8840 |
. . . . 5
⊢ ((𝑌 ∈ V ∧ (𝑔‘𝐴) ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝑌 ∖ {(𝑔‘𝐴)}) ≈ (𝑌 ∖ {𝐵})) |
14 | 7, 11, 12, 13 | syl3anc 1370 |
. . . 4
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → (𝑌 ∖ {(𝑔‘𝐴)}) ≈ (𝑌 ∖ {𝐵})) |
15 | | bren 8743 |
. . . 4
⊢ ((𝑌 ∖ {(𝑔‘𝐴)}) ≈ (𝑌 ∖ {𝐵}) ↔ ∃ℎ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵})) |
16 | 14, 15 | sylib 217 |
. . 3
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → ∃ℎ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵})) |
17 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝑔‘𝐴) ∈ V |
18 | 17 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (𝑔‘𝐴) ∈ V) |
19 | | simpl2 1191 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → 𝐵 ∈ 𝑌) |
20 | | f1osng 6757 |
. . . . . . . . . 10
⊢ (((𝑔‘𝐴) ∈ V ∧ 𝐵 ∈ 𝑌) → {〈(𝑔‘𝐴), 𝐵〉}:{(𝑔‘𝐴)}–1-1-onto→{𝐵}) |
21 | 18, 19, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → {〈(𝑔‘𝐴), 𝐵〉}:{(𝑔‘𝐴)}–1-1-onto→{𝐵}) |
22 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵})) |
23 | | disjdif 4405 |
. . . . . . . . . 10
⊢ ({(𝑔‘𝐴)} ∩ (𝑌 ∖ {(𝑔‘𝐴)})) = ∅ |
24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({(𝑔‘𝐴)} ∩ (𝑌 ∖ {(𝑔‘𝐴)})) = ∅) |
25 | | disjdif 4405 |
. . . . . . . . . 10
⊢ ({𝐵} ∩ (𝑌 ∖ {𝐵})) = ∅ |
26 | 25 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({𝐵} ∩ (𝑌 ∖ {𝐵})) = ∅) |
27 | | f1oun 6735 |
. . . . . . . . 9
⊢
((({〈(𝑔‘𝐴), 𝐵〉}:{(𝑔‘𝐴)}–1-1-onto→{𝐵} ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵})) ∧ (({(𝑔‘𝐴)} ∩ (𝑌 ∖ {(𝑔‘𝐴)})) = ∅ ∧ ({𝐵} ∩ (𝑌 ∖ {𝐵})) = ∅)) → ({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)}))–1-1-onto→({𝐵} ∪ (𝑌 ∖ {𝐵}))) |
28 | 21, 22, 24, 26, 27 | syl22anc 836 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)}))–1-1-onto→({𝐵} ∪ (𝑌 ∖ {𝐵}))) |
29 | 8 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → 𝑔:𝑋⟶𝑌) |
30 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → 𝐴 ∈ 𝑋) |
31 | 29, 30 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (𝑔‘𝐴) ∈ 𝑌) |
32 | | uncom 4087 |
. . . . . . . . . . 11
⊢ ({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)})) = ((𝑌 ∖ {(𝑔‘𝐴)}) ∪ {(𝑔‘𝐴)}) |
33 | | difsnid 4743 |
. . . . . . . . . . 11
⊢ ((𝑔‘𝐴) ∈ 𝑌 → ((𝑌 ∖ {(𝑔‘𝐴)}) ∪ {(𝑔‘𝐴)}) = 𝑌) |
34 | 32, 33 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝑔‘𝐴) ∈ 𝑌 → ({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)})) = 𝑌) |
35 | 31, 34 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)})) = 𝑌) |
36 | | uncom 4087 |
. . . . . . . . . . 11
⊢ ({𝐵} ∪ (𝑌 ∖ {𝐵})) = ((𝑌 ∖ {𝐵}) ∪ {𝐵}) |
37 | | difsnid 4743 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑌 → ((𝑌 ∖ {𝐵}) ∪ {𝐵}) = 𝑌) |
38 | 36, 37 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑌 → ({𝐵} ∪ (𝑌 ∖ {𝐵})) = 𝑌) |
39 | 19, 38 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({𝐵} ∪ (𝑌 ∖ {𝐵})) = 𝑌) |
40 | | f1oeq23 6707 |
. . . . . . . . 9
⊢
((({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)})) = 𝑌 ∧ ({𝐵} ∪ (𝑌 ∖ {𝐵})) = 𝑌) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)}))–1-1-onto→({𝐵} ∪ (𝑌 ∖ {𝐵})) ↔ ({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):𝑌–1-1-onto→𝑌)) |
41 | 35, 39, 40 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):({(𝑔‘𝐴)} ∪ (𝑌 ∖ {(𝑔‘𝐴)}))–1-1-onto→({𝐵} ∪ (𝑌 ∖ {𝐵})) ↔ ({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):𝑌–1-1-onto→𝑌)) |
42 | 28, 41 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):𝑌–1-1-onto→𝑌) |
43 | | simprl 768 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → 𝑔:𝑋–1-1-onto→𝑌) |
44 | | f1oco 6739 |
. . . . . . 7
⊢
((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ):𝑌–1-1-onto→𝑌 ∧ 𝑔:𝑋–1-1-onto→𝑌) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔):𝑋–1-1-onto→𝑌) |
45 | 42, 43, 44 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔):𝑋–1-1-onto→𝑌) |
46 | | f1ofn 6717 |
. . . . . . . . 9
⊢ (𝑔:𝑋–1-1-onto→𝑌 → 𝑔 Fn 𝑋) |
47 | 46 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → 𝑔 Fn 𝑋) |
48 | | fvco2 6865 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ)‘(𝑔‘𝐴))) |
49 | 47, 30, 48 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ)‘(𝑔‘𝐴))) |
50 | | f1ofn 6717 |
. . . . . . . . 9
⊢
({〈(𝑔‘𝐴), 𝐵〉}:{(𝑔‘𝐴)}–1-1-onto→{𝐵} → {〈(𝑔‘𝐴), 𝐵〉} Fn {(𝑔‘𝐴)}) |
51 | 21, 50 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → {〈(𝑔‘𝐴), 𝐵〉} Fn {(𝑔‘𝐴)}) |
52 | | f1ofn 6717 |
. . . . . . . . 9
⊢ (ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}) → ℎ Fn (𝑌 ∖ {(𝑔‘𝐴)})) |
53 | 52 | ad2antll 726 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ℎ Fn (𝑌 ∖ {(𝑔‘𝐴)})) |
54 | 17 | snid 4597 |
. . . . . . . . 9
⊢ (𝑔‘𝐴) ∈ {(𝑔‘𝐴)} |
55 | 54 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (𝑔‘𝐴) ∈ {(𝑔‘𝐴)}) |
56 | | fvun1 6859 |
. . . . . . . 8
⊢
(({〈(𝑔‘𝐴), 𝐵〉} Fn {(𝑔‘𝐴)} ∧ ℎ Fn (𝑌 ∖ {(𝑔‘𝐴)}) ∧ (({(𝑔‘𝐴)} ∩ (𝑌 ∖ {(𝑔‘𝐴)})) = ∅ ∧ (𝑔‘𝐴) ∈ {(𝑔‘𝐴)})) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ)‘(𝑔‘𝐴)) = ({〈(𝑔‘𝐴), 𝐵〉}‘(𝑔‘𝐴))) |
57 | 51, 53, 24, 55, 56 | syl112anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ)‘(𝑔‘𝐴)) = ({〈(𝑔‘𝐴), 𝐵〉}‘(𝑔‘𝐴))) |
58 | | fvsng 7052 |
. . . . . . . 8
⊢ (((𝑔‘𝐴) ∈ V ∧ 𝐵 ∈ 𝑌) → ({〈(𝑔‘𝐴), 𝐵〉}‘(𝑔‘𝐴)) = 𝐵) |
59 | 18, 19, 58 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ({〈(𝑔‘𝐴), 𝐵〉}‘(𝑔‘𝐴)) = 𝐵) |
60 | 49, 57, 59 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = 𝐵) |
61 | | snex 5354 |
. . . . . . . . 9
⊢
{〈(𝑔‘𝐴), 𝐵〉} ∈ V |
62 | | vex 3436 |
. . . . . . . . 9
⊢ ℎ ∈ V |
63 | 61, 62 | unex 7596 |
. . . . . . . 8
⊢
({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∈ V |
64 | | vex 3436 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
65 | 63, 64 | coex 7777 |
. . . . . . 7
⊢
(({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔) ∈ V |
66 | | f1oeq1 6704 |
. . . . . . . 8
⊢ (𝑓 = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔) → (𝑓:𝑋–1-1-onto→𝑌 ↔ (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔):𝑋–1-1-onto→𝑌)) |
67 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑓 = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔) → (𝑓‘𝐴) = ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴)) |
68 | 67 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔) → ((𝑓‘𝐴) = 𝐵 ↔ ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = 𝐵)) |
69 | 66, 68 | anbi12d 631 |
. . . . . . 7
⊢ (𝑓 = (({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔) → ((𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵) ↔ ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔):𝑋–1-1-onto→𝑌 ∧ ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = 𝐵))) |
70 | 65, 69 | spcev 3545 |
. . . . . 6
⊢
(((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔):𝑋–1-1-onto→𝑌 ∧ ((({〈(𝑔‘𝐴), 𝐵〉} ∪ ℎ) ∘ 𝑔)‘𝐴) = 𝐵) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) |
71 | 45, 60, 70 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ (𝑔:𝑋–1-1-onto→𝑌 ∧ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}))) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) |
72 | 71 | expr 457 |
. . . 4
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → (ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵))) |
73 | 72 | exlimdv 1936 |
. . 3
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → (∃ℎ ℎ:(𝑌 ∖ {(𝑔‘𝐴)})–1-1-onto→(𝑌 ∖ {𝐵}) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵))) |
74 | 16, 73 | mpd 15 |
. 2
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) ∧ 𝑔:𝑋–1-1-onto→𝑌) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) |
75 | 3, 74 | exlimddv 1938 |
1
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) |