| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6905 |
. . 3
⊢ (𝑎 = ∅ → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘∅)) |
| 2 | | fveq2 6905 |
. . 3
⊢ (𝑎 = ∅ →
(𝑅1‘𝑎) =
(𝑅1‘∅)) |
| 3 | | 2fveq3 6910 |
. . 3
⊢ (𝑎 = ∅ →
(card‘(𝑅1‘𝑎)) =
(card‘(𝑅1‘∅))) |
| 4 | 1, 2, 3 | f1oeq123d 6841 |
. 2
⊢ (𝑎 = ∅ → ((rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎)) ↔ (rec(𝐺,
∅)‘∅):(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅)))) |
| 5 | | fveq2 6905 |
. . 3
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) |
| 6 | | fveq2 6905 |
. . 3
⊢ (𝑎 = 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘𝑏)) |
| 7 | | 2fveq3 6910 |
. . 3
⊢ (𝑎 = 𝑏 →
(card‘(𝑅1‘𝑎)) =
(card‘(𝑅1‘𝑏))) |
| 8 | 5, 6, 7 | f1oeq123d 6841 |
. 2
⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏)))) |
| 9 | | fveq2 6905 |
. . 3
⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) |
| 10 | | fveq2 6905 |
. . 3
⊢ (𝑎 = suc 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘suc 𝑏)) |
| 11 | | 2fveq3 6910 |
. . 3
⊢ (𝑎 = suc 𝑏 →
(card‘(𝑅1‘𝑎)) =
(card‘(𝑅1‘suc 𝑏))) |
| 12 | 9, 10, 11 | f1oeq123d 6841 |
. 2
⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)))) |
| 13 | | fveq2 6905 |
. . 3
⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) |
| 14 | | fveq2 6905 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑅1‘𝑎) =
(𝑅1‘𝐴)) |
| 15 | | 2fveq3 6910 |
. . 3
⊢ (𝑎 = 𝐴 →
(card‘(𝑅1‘𝑎)) =
(card‘(𝑅1‘𝐴))) |
| 16 | 13, 14, 15 | f1oeq123d 6841 |
. 2
⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝐴):(𝑅1‘𝐴)–1-1-onto→(card‘(𝑅1‘𝐴)))) |
| 17 | | f1o0 6884 |
. . 3
⊢
∅:∅–1-1-onto→∅ |
| 18 | | 0ex 5306 |
. . . . . 6
⊢ ∅
∈ V |
| 19 | 18 | rdg0 8462 |
. . . . 5
⊢
(rec(𝐺,
∅)‘∅) = ∅ |
| 20 | | f1oeq1 6835 |
. . . . 5
⊢
((rec(𝐺,
∅)‘∅) = ∅ → ((rec(𝐺,
∅)‘∅):(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))
↔ ∅:(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅)))) |
| 21 | 19, 20 | ax-mp 5 |
. . . 4
⊢
((rec(𝐺,
∅)‘∅):(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))
↔ ∅:(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))) |
| 22 | | r10 9809 |
. . . . 5
⊢
(𝑅1‘∅) = ∅ |
| 23 | 22 | fveq2i 6908 |
. . . . . 6
⊢
(card‘(𝑅1‘∅)) =
(card‘∅) |
| 24 | | card0 9999 |
. . . . . 6
⊢
(card‘∅) = ∅ |
| 25 | 23, 24 | eqtri 2764 |
. . . . 5
⊢
(card‘(𝑅1‘∅)) =
∅ |
| 26 | | f1oeq23 6838 |
. . . . 5
⊢
(((𝑅1‘∅) = ∅ ∧
(card‘(𝑅1‘∅)) = ∅) →
(∅:(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))
↔ ∅:∅–1-1-onto→∅)) |
| 27 | 22, 25, 26 | mp2an 692 |
. . . 4
⊢
(∅:(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))
↔ ∅:∅–1-1-onto→∅) |
| 28 | 21, 27 | bitri 275 |
. . 3
⊢
((rec(𝐺,
∅)‘∅):(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅))
↔ ∅:∅–1-1-onto→∅) |
| 29 | 17, 28 | mpbir 231 |
. 2
⊢
(rec(𝐺,
∅)‘∅):(𝑅1‘∅)–1-1-onto→(card‘(𝑅1‘∅)) |
| 30 | | ackbij.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 31 | 30 | ackbij1lem17 10276 |
. . . . . . . . 9
⊢ 𝐹:(𝒫 ω ∩
Fin)–1-1→ω |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → 𝐹:(𝒫 ω ∩
Fin)–1-1→ω) |
| 33 | | r1fin 9814 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω →
(𝑅1‘𝑏) ∈ Fin) |
| 34 | | ficardom 10002 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑏) ∈ Fin →
(card‘(𝑅1‘𝑏)) ∈ ω) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
(card‘(𝑅1‘𝑏)) ∈ ω) |
| 36 | | ackbij2lem1 10259 |
. . . . . . . . 9
⊢
((card‘(𝑅1‘𝑏)) ∈ ω → 𝒫
(card‘(𝑅1‘𝑏)) ⊆ (𝒫 ω ∩
Fin)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → 𝒫
(card‘(𝑅1‘𝑏)) ⊆ (𝒫 ω ∩
Fin)) |
| 38 | | f1ores 6861 |
. . . . . . . 8
⊢ ((𝐹:(𝒫 ω ∩
Fin)–1-1→ω ∧
𝒫 (card‘(𝑅1‘𝑏)) ⊆ (𝒫 ω ∩ Fin))
→ (𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(𝐹 “ 𝒫
(card‘(𝑅1‘𝑏)))) |
| 39 | 32, 37, 38 | syl2anc 584 |
. . . . . . 7
⊢ (𝑏 ∈ ω → (𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(𝐹 “ 𝒫
(card‘(𝑅1‘𝑏)))) |
| 40 | 30 | ackbij1b 10279 |
. . . . . . . . . 10
⊢
((card‘(𝑅1‘𝑏)) ∈ ω → (𝐹 “ 𝒫
(card‘(𝑅1‘𝑏))) = (card‘𝒫
(card‘(𝑅1‘𝑏)))) |
| 41 | 35, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → (𝐹 “ 𝒫
(card‘(𝑅1‘𝑏))) = (card‘𝒫
(card‘(𝑅1‘𝑏)))) |
| 42 | | ficardid 10003 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑏) ∈ Fin →
(card‘(𝑅1‘𝑏)) ≈ (𝑅1‘𝑏)) |
| 43 | | pwen 9191 |
. . . . . . . . . 10
⊢
((card‘(𝑅1‘𝑏)) ≈ (𝑅1‘𝑏) → 𝒫
(card‘(𝑅1‘𝑏)) ≈ 𝒫
(𝑅1‘𝑏)) |
| 44 | | carden2b 10008 |
. . . . . . . . . 10
⊢
(𝒫 (card‘(𝑅1‘𝑏)) ≈ 𝒫
(𝑅1‘𝑏) → (card‘𝒫
(card‘(𝑅1‘𝑏))) = (card‘𝒫
(𝑅1‘𝑏))) |
| 45 | 33, 42, 43, 44 | 4syl 19 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
(card‘𝒫 (card‘(𝑅1‘𝑏))) = (card‘𝒫
(𝑅1‘𝑏))) |
| 46 | 41, 45 | eqtrd 2776 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → (𝐹 “ 𝒫
(card‘(𝑅1‘𝑏))) = (card‘𝒫
(𝑅1‘𝑏))) |
| 47 | 46 | f1oeq3d 6844 |
. . . . . . 7
⊢ (𝑏 ∈ ω → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(𝐹 “ 𝒫
(card‘(𝑅1‘𝑏))) ↔ (𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)))) |
| 48 | 39, 47 | mpbid 232 |
. . . . . 6
⊢ (𝑏 ∈ ω → (𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(card‘𝒫
(𝑅1‘𝑏))) |
| 49 | 48 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(card‘𝒫
(𝑅1‘𝑏))) |
| 50 | | f1opw 7690 |
. . . . . 6
⊢
((rec(𝐺,
∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏)) → (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)–1-1-onto→𝒫
(card‘(𝑅1‘𝑏))) |
| 51 | 50 | adantl 481 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)–1-1-onto→𝒫
(card‘(𝑅1‘𝑏))) |
| 52 | | f1oco 6870 |
. . . . 5
⊢ (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))):𝒫
(card‘(𝑅1‘𝑏))–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)) ∧ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)–1-1-onto→𝒫
(card‘(𝑅1‘𝑏))) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏))) |
| 53 | 49, 51, 52 | syl2anc 584 |
. . . 4
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏))) |
| 54 | | frsuc 8478 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅) ↾
ω)‘suc 𝑏) =
(𝐺‘((rec(𝐺, ∅) ↾
ω)‘𝑏))) |
| 55 | | peano2 7913 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω → suc 𝑏 ∈
ω) |
| 56 | 55 | fvresd 6925 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅) ↾
ω)‘suc 𝑏) =
(rec(𝐺, ∅)‘suc
𝑏)) |
| 57 | | fvres 6924 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅) ↾
ω)‘𝑏) =
(rec(𝐺,
∅)‘𝑏)) |
| 58 | 57 | fveq2d 6909 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω → (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝑏)) = (𝐺‘(rec(𝐺, ∅)‘𝑏))) |
| 59 | | fvex 6918 |
. . . . . . . . . . 11
⊢
(rec(𝐺,
∅)‘𝑏) ∈
V |
| 60 | | dmeq 5913 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘𝑏) → dom 𝑥 = dom (rec(𝐺, ∅)‘𝑏)) |
| 61 | 60 | pweqd 4616 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (rec(𝐺, ∅)‘𝑏) → 𝒫 dom 𝑥 = 𝒫 dom (rec(𝐺, ∅)‘𝑏)) |
| 62 | | imaeq1 6072 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘𝑏) → (𝑥 “ 𝑦) = ((rec(𝐺, ∅)‘𝑏) “ 𝑦)) |
| 63 | 62 | fveq2d 6909 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (rec(𝐺, ∅)‘𝑏) → (𝐹‘(𝑥 “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) |
| 64 | 61, 63 | mpteq12dv 5232 |
. . . . . . . . . . . 12
⊢ (𝑥 = (rec(𝐺, ∅)‘𝑏) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 65 | | ackbij.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
| 66 | 59 | dmex 7932 |
. . . . . . . . . . . . . 14
⊢ dom
(rec(𝐺,
∅)‘𝑏) ∈
V |
| 67 | 66 | pwex 5379 |
. . . . . . . . . . . . 13
⊢ 𝒫
dom (rec(𝐺,
∅)‘𝑏) ∈
V |
| 68 | 67 | mptex 7244 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) ∈ V |
| 69 | 64, 65, 68 | fvmpt 7015 |
. . . . . . . . . . 11
⊢
((rec(𝐺,
∅)‘𝑏) ∈ V
→ (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 70 | 59, 69 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) |
| 71 | 58, 70 | eqtrdi 2792 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 72 | 54, 56, 71 | 3eqtr3d 2784 |
. . . . . . . 8
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 73 | 72 | adantr 480 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 74 | | f1odm 6851 |
. . . . . . . . . . 11
⊢
((rec(𝐺,
∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏)) → dom (rec(𝐺, ∅)‘𝑏) =
(𝑅1‘𝑏)) |
| 75 | 74 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → dom (rec(𝐺, ∅)‘𝑏) =
(𝑅1‘𝑏)) |
| 76 | 75 | pweqd 4616 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → 𝒫 dom
(rec(𝐺,
∅)‘𝑏) =
𝒫 (𝑅1‘𝑏)) |
| 77 | 76 | mpteq1d 5236 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))) |
| 78 | | fvex 6918 |
. . . . . . . . . . 11
⊢ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)) ∈ V |
| 79 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) |
| 80 | 78, 79 | fnmpti 6710 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) Fn 𝒫
(𝑅1‘𝑏) |
| 81 | 80 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) Fn 𝒫
(𝑅1‘𝑏)) |
| 82 | | f1ofn 6848 |
. . . . . . . . . 10
⊢ (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))) Fn 𝒫
(𝑅1‘𝑏)) |
| 83 | 53, 82 | syl 17 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))) Fn 𝒫
(𝑅1‘𝑏)) |
| 84 | | f1of 6847 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)–1-1-onto→𝒫
(card‘(𝑅1‘𝑏)) → (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)⟶𝒫
(card‘(𝑅1‘𝑏))) |
| 85 | 51, 84 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)⟶𝒫
(card‘(𝑅1‘𝑏))) |
| 86 | 85 | ffvelcdmda 7103 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐) ∈ 𝒫
(card‘(𝑅1‘𝑏))) |
| 87 | 86 | fvresd 6925 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏)))‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐)) = (𝐹‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐))) |
| 88 | | imaeq2 6073 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → ((rec(𝐺, ∅)‘𝑏) “ 𝑎) = ((rec(𝐺, ∅)‘𝑏) “ 𝑐)) |
| 89 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)) = (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)) |
| 90 | 59 | imaex 7937 |
. . . . . . . . . . . . . 14
⊢
((rec(𝐺,
∅)‘𝑏) “
𝑐) ∈
V |
| 91 | 88, 89, 90 | fvmpt 7015 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝒫
(𝑅1‘𝑏) → ((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐) = ((rec(𝐺, ∅)‘𝑏) “ 𝑐)) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐) = ((rec(𝐺, ∅)‘𝑏) “ 𝑐)) |
| 93 | 92 | fveq2d 6909 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → (𝐹‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐)) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐))) |
| 94 | 87, 93 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏)))‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐)) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐))) |
| 95 | | fvco3 7007 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)):𝒫
(𝑅1‘𝑏)⟶𝒫
(card‘(𝑅1‘𝑏)) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))‘𝑐) = ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏)))‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐))) |
| 96 | 85, 95 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))‘𝑐) = ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏)))‘((𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))‘𝑐))) |
| 97 | | imaeq2 6073 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → ((rec(𝐺, ∅)‘𝑏) “ 𝑦) = ((rec(𝐺, ∅)‘𝑏) “ 𝑐)) |
| 98 | 97 | fveq2d 6909 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑐 → (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐))) |
| 99 | | fvex 6918 |
. . . . . . . . . . . 12
⊢ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐)) ∈ V |
| 100 | 98, 79, 99 | fvmpt 7015 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫
(𝑅1‘𝑏) → ((𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐))) |
| 101 | 100 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑐))) |
| 102 | 94, 96, 101 | 3eqtr4rd 2787 |
. . . . . . . . 9
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) ∧ 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) → ((𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦)))‘𝑐) = (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))‘𝑐)) |
| 103 | 81, 83, 102 | eqfnfvd 7053 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑦 ∈ 𝒫
(𝑅1‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) = ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))) |
| 104 | 77, 103 | eqtrd 2776 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘𝑏) “ 𝑦))) = ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))) |
| 105 | 73, 104 | eqtrd 2776 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎)))) |
| 106 | | f1oeq1 6835 |
. . . . . 6
⊢
((rec(𝐺,
∅)‘suc 𝑏) =
((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))) → ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)))) |
| 107 | 105, 106 | syl 17 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)))) |
| 108 | | nnon 7894 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → 𝑏 ∈ On) |
| 109 | | r1suc 9811 |
. . . . . . . 8
⊢ (𝑏 ∈ On →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) |
| 110 | 108, 109 | syl 17 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) |
| 111 | 110 | fveq2d 6909 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(card‘(𝑅1‘suc 𝑏)) = (card‘𝒫
(𝑅1‘𝑏))) |
| 112 | | f1oeq23 6838 |
. . . . . . 7
⊢
(((𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏) ∧
(card‘(𝑅1‘suc 𝑏)) = (card‘𝒫
(𝑅1‘𝑏))) → (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)))) |
| 113 | 110, 111,
112 | syl2anc 584 |
. . . . . 6
⊢ (𝑏 ∈ ω → (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)))) |
| 114 | 113 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)))) |
| 115 | 107, 114 | bitrd 279 |
. . . 4
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) ↔ ((𝐹 ↾ 𝒫
(card‘(𝑅1‘𝑏))) ∘ (𝑎 ∈ 𝒫
(𝑅1‘𝑏) ↦ ((rec(𝐺, ∅)‘𝑏) “ 𝑎))):𝒫
(𝑅1‘𝑏)–1-1-onto→(card‘𝒫
(𝑅1‘𝑏)))) |
| 116 | 53, 115 | mpbird 257 |
. . 3
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) |
| 117 | 116 | ex 412 |
. 2
⊢ (𝑏 ∈ ω →
((rec(𝐺,
∅)‘𝑏):(𝑅1‘𝑏)–1-1-onto→(card‘(𝑅1‘𝑏)) → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)))) |
| 118 | 4, 8, 12, 16, 29, 117 | finds 7919 |
1
⊢ (𝐴 ∈ ω →
(rec(𝐺,
∅)‘𝐴):(𝑅1‘𝐴)–1-1-onto→(card‘(𝑅1‘𝐴))) |