MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmim Structured version   Visualization version   GIF version

Theorem islmim 20673
Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
islmim.b 𝐵 = (Base‘𝑅)
islmim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
islmim (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))

Proof of Theorem islmim
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmim 20634 . . 3 LMIso = (𝑎 ∈ LMod, 𝑏 ∈ LMod ↦ {𝑐 ∈ (𝑎 LMHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)})
2 ovex 7442 . . . 4 (𝑎 LMHom 𝑏) ∈ V
32rabex 5333 . . 3 {𝑐 ∈ (𝑎 LMHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} ∈ V
4 oveq12 7418 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑎 LMHom 𝑏) = (𝑅 LMHom 𝑆))
5 fveq2 6892 . . . . . 6 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
6 islmim.b . . . . . 6 𝐵 = (Base‘𝑅)
75, 6eqtr4di 2791 . . . . 5 (𝑎 = 𝑅 → (Base‘𝑎) = 𝐵)
8 fveq2 6892 . . . . . 6 (𝑏 = 𝑆 → (Base‘𝑏) = (Base‘𝑆))
9 islmim.c . . . . . 6 𝐶 = (Base‘𝑆)
108, 9eqtr4di 2791 . . . . 5 (𝑏 = 𝑆 → (Base‘𝑏) = 𝐶)
11 f1oeq23 6825 . . . . 5 (((Base‘𝑎) = 𝐵 ∧ (Base‘𝑏) = 𝐶) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
127, 10, 11syl2an 597 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
134, 12rabeqbidv 3450 . . 3 ((𝑎 = 𝑅𝑏 = 𝑆) → {𝑐 ∈ (𝑎 LMHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} = {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶})
141, 3, 13elovmpo 7651 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
15 df-3an 1090 . 2 ((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
16 f1oeq1 6822 . . . . 5 (𝑐 = 𝐹 → (𝑐:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
1716elrab 3684 . . . 4 (𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶} ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
1817anbi2i 624 . . 3 (((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod) ∧ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
19 lmhmlmod1 20644 . . . . . 6 (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝑅 ∈ LMod)
20 lmhmlmod2 20643 . . . . . 6 (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod)
2119, 20jca 513 . . . . 5 (𝐹 ∈ (𝑅 LMHom 𝑆) → (𝑅 ∈ LMod ∧ 𝑆 ∈ LMod))
2221adantr 482 . . . 4 ((𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑅 ∈ LMod ∧ 𝑆 ∈ LMod))
2322pm4.71ri 562 . . 3 ((𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod) ∧ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
2418, 23bitr4i 278 . 2 (((𝑅 ∈ LMod ∧ 𝑆 ∈ LMod) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 LMHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
2514, 15, 243bitri 297 1 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {crab 3433  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  Basecbs 17144  LModclmod 20471   LMHom clmhm 20630   LMIso clmim 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-lmhm 20633  df-lmim 20634
This theorem is referenced by:  lmimf1o  20674  lmimlmhm  20675  islmim2  20677  indlcim  21395  lmimco  21399  lmhmqusker  32534  dimkerim  32712  frlmsnic  41110  pwssplit4  41831
  Copyright terms: Public domain W3C validator