Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemg Structured version   Visualization version   GIF version

Theorem hgt750lemg 32318
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemg.f 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
hgt750lemg.t (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
hgt750lemg.n (𝜑𝑁:(0..^3)⟶ℕ)
hgt750lemg.l (𝜑𝐿:ℕ⟶ℝ)
hgt750lemg.1 (𝜑𝑁𝑅)
Assertion
Ref Expression
hgt750lemg (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Distinct variable groups:   𝑁,𝑐   𝑅,𝑐   𝑇,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐹(𝑐)   𝐿(𝑐)

Proof of Theorem hgt750lemg
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6711 . . . . 5 (𝑎 = (𝑇𝑏) → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘(𝑇𝑏))))
2 tpfi 8936 . . . . . 6 {0, 1, 2} ∈ Fin
32a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ Fin)
4 hgt750lemg.t . . . . . 6 (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
5 fzo0to3tp 13311 . . . . . . 7 (0..^3) = {0, 1, 2}
6 f1oeq23 6641 . . . . . . 7 (((0..^3) = {0, 1, 2} ∧ (0..^3) = {0, 1, 2}) → (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2}))
75, 5, 6mp2an 692 . . . . . 6 (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
84, 7sylib 221 . . . . 5 (𝜑𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
9 eqidd 2735 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑇𝑏) = (𝑇𝑏))
10 hgt750lemg.l . . . . . . . 8 (𝜑𝐿:ℕ⟶ℝ)
1110adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝐿:ℕ⟶ℝ)
12 hgt750lemg.n . . . . . . . . 9 (𝜑𝑁:(0..^3)⟶ℕ)
1312adantr 484 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑁:(0..^3)⟶ℕ)
14 simpr 488 . . . . . . . . 9 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ {0, 1, 2})
1514, 5eleqtrrdi 2845 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ (0..^3))
1613, 15ffvelrnd 6894 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝑁𝑎) ∈ ℕ)
1711, 16ffvelrnd 6894 . . . . . 6 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℝ)
1817recnd 10844 . . . . 5 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℂ)
191, 3, 8, 9, 18fprodf1o 15489 . . . 4 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))))
20 hgt750lemg.f . . . . . . . . . . 11 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
2120a1i 11 . . . . . . . . . 10 (𝜑𝐹 = (𝑐𝑅 ↦ (𝑐𝑇)))
22 simpr 488 . . . . . . . . . . 11 ((𝜑𝑐 = 𝑁) → 𝑐 = 𝑁)
2322coeq1d 5719 . . . . . . . . . 10 ((𝜑𝑐 = 𝑁) → (𝑐𝑇) = (𝑁𝑇))
24 hgt750lemg.1 . . . . . . . . . 10 (𝜑𝑁𝑅)
25 f1of 6650 . . . . . . . . . . . . 13 (𝑇:(0..^3)–1-1-onto→(0..^3) → 𝑇:(0..^3)⟶(0..^3))
264, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑇:(0..^3)⟶(0..^3))
27 ovexd 7237 . . . . . . . . . . . 12 (𝜑 → (0..^3) ∈ V)
2826, 27fexd 7032 . . . . . . . . . . 11 (𝜑𝑇 ∈ V)
29 coexg 7696 . . . . . . . . . . 11 ((𝑁𝑅𝑇 ∈ V) → (𝑁𝑇) ∈ V)
3024, 28, 29syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑁𝑇) ∈ V)
3121, 23, 24, 30fvmptd 6814 . . . . . . . . 9 (𝜑 → (𝐹𝑁) = (𝑁𝑇))
3231adantr 484 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐹𝑁) = (𝑁𝑇))
3332fveq1d 6708 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝐹𝑁)‘𝑏) = ((𝑁𝑇)‘𝑏))
34 f1ofun 6652 . . . . . . . . . 10 (𝑇:(0..^3)–1-1-onto→(0..^3) → Fun 𝑇)
354, 34syl 17 . . . . . . . . 9 (𝜑 → Fun 𝑇)
3635adantr 484 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → Fun 𝑇)
37 f1odm 6654 . . . . . . . . . . 11 (𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2} → dom 𝑇 = {0, 1, 2})
388, 37syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑇 = {0, 1, 2})
3938eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑏 ∈ dom 𝑇𝑏 ∈ {0, 1, 2}))
4039biimpar 481 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → 𝑏 ∈ dom 𝑇)
41 fvco 6798 . . . . . . . 8 ((Fun 𝑇𝑏 ∈ dom 𝑇) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4236, 40, 41syl2anc 587 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4333, 42eqtr2d 2775 . . . . . 6 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑁‘(𝑇𝑏)) = ((𝐹𝑁)‘𝑏))
4443fveq2d 6710 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘(𝑇𝑏))) = (𝐿‘((𝐹𝑁)‘𝑏)))
4544prodeq2dv 15466 . . . 4 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)))
4619, 45eqtr2d 2775 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)))
47 2fveq3 6711 . . . 4 (𝑏 = 0 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘0)))
48 2fveq3 6711 . . . 4 (𝑏 = 1 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘1)))
49 c0ex 10810 . . . . 5 0 ∈ V
5049a1i 11 . . . 4 (𝜑 → 0 ∈ V)
51 1ex 10812 . . . . 5 1 ∈ V
5251a1i 11 . . . 4 (𝜑 → 1 ∈ V)
5331fveq1d 6708 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘0) = ((𝑁𝑇)‘0))
5449tpid1 4674 . . . . . . . . . 10 0 ∈ {0, 1, 2}
5554, 38eleqtrrid 2841 . . . . . . . . 9 (𝜑 → 0 ∈ dom 𝑇)
56 fvco 6798 . . . . . . . . 9 ((Fun 𝑇 ∧ 0 ∈ dom 𝑇) → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5735, 55, 56syl2anc 587 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5853, 57eqtrd 2774 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘0) = (𝑁‘(𝑇‘0)))
5954, 5eleqtrri 2833 . . . . . . . . . 10 0 ∈ (0..^3)
6059a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^3))
6126, 60ffvelrnd 6894 . . . . . . . 8 (𝜑 → (𝑇‘0) ∈ (0..^3))
6212, 61ffvelrnd 6894 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘0)) ∈ ℕ)
6358, 62eqeltrd 2834 . . . . . 6 (𝜑 → ((𝐹𝑁)‘0) ∈ ℕ)
6410, 63ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℝ)
6564recnd 10844 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℂ)
6631fveq1d 6708 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘1) = ((𝑁𝑇)‘1))
6751tpid2 4676 . . . . . . . . . 10 1 ∈ {0, 1, 2}
6867, 38eleqtrrid 2841 . . . . . . . . 9 (𝜑 → 1 ∈ dom 𝑇)
69 fvco 6798 . . . . . . . . 9 ((Fun 𝑇 ∧ 1 ∈ dom 𝑇) → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7035, 68, 69syl2anc 587 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7166, 70eqtrd 2774 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘1) = (𝑁‘(𝑇‘1)))
7267, 5eleqtrri 2833 . . . . . . . . . 10 1 ∈ (0..^3)
7372a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ (0..^3))
7426, 73ffvelrnd 6894 . . . . . . . 8 (𝜑 → (𝑇‘1) ∈ (0..^3))
7512, 74ffvelrnd 6894 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘1)) ∈ ℕ)
7671, 75eqeltrd 2834 . . . . . 6 (𝜑 → ((𝐹𝑁)‘1) ∈ ℕ)
7710, 76ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℝ)
7877recnd 10844 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℂ)
79 0ne1 11884 . . . . 5 0 ≠ 1
8079a1i 11 . . . 4 (𝜑 → 0 ≠ 1)
81 2fveq3 6711 . . . 4 (𝑏 = 2 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘2)))
82 2ex 11890 . . . . 5 2 ∈ V
8382a1i 11 . . . 4 (𝜑 → 2 ∈ V)
8431fveq1d 6708 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘2) = ((𝑁𝑇)‘2))
8582tpid3 4679 . . . . . . . . . 10 2 ∈ {0, 1, 2}
8685, 38eleqtrrid 2841 . . . . . . . . 9 (𝜑 → 2 ∈ dom 𝑇)
87 fvco 6798 . . . . . . . . 9 ((Fun 𝑇 ∧ 2 ∈ dom 𝑇) → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8835, 86, 87syl2anc 587 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8984, 88eqtrd 2774 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘2) = (𝑁‘(𝑇‘2)))
9085, 5eleqtrri 2833 . . . . . . . . . 10 2 ∈ (0..^3)
9190a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ (0..^3))
9226, 91ffvelrnd 6894 . . . . . . . 8 (𝜑 → (𝑇‘2) ∈ (0..^3))
9312, 92ffvelrnd 6894 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘2)) ∈ ℕ)
9489, 93eqeltrd 2834 . . . . . 6 (𝜑 → ((𝐹𝑁)‘2) ∈ ℕ)
9510, 94ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℝ)
9695recnd 10844 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℂ)
97 0ne2 12020 . . . . 5 0 ≠ 2
9897a1i 11 . . . 4 (𝜑 → 0 ≠ 2)
99 1ne2 12021 . . . . 5 1 ≠ 2
10099a1i 11 . . . 4 (𝜑 → 1 ≠ 2)
10147, 48, 50, 52, 65, 78, 80, 81, 83, 96, 98, 100prodtp 30833 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))))
102 2fveq3 6711 . . . 4 (𝑎 = 0 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘0)))
103 2fveq3 6711 . . . 4 (𝑎 = 1 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘1)))
10412, 60ffvelrnd 6894 . . . . . 6 (𝜑 → (𝑁‘0) ∈ ℕ)
10510, 104ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℝ)
106105recnd 10844 . . . 4 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℂ)
10712, 73ffvelrnd 6894 . . . . . 6 (𝜑 → (𝑁‘1) ∈ ℕ)
10810, 107ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℝ)
109108recnd 10844 . . . 4 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℂ)
110 2fveq3 6711 . . . 4 (𝑎 = 2 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘2)))
11112, 91ffvelrnd 6894 . . . . . 6 (𝜑 → (𝑁‘2) ∈ ℕ)
11210, 111ffvelrnd 6894 . . . . 5 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℝ)
113112recnd 10844 . . . 4 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℂ)
114102, 103, 50, 52, 106, 109, 80, 110, 83, 113, 98, 100prodtp 30833 . . 3 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11546, 101, 1143eqtr3d 2782 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11665, 78, 96mulassd 10839 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))))
117106, 109, 113mulassd 10839 . 2 (𝜑 → (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
118115, 116, 1173eqtr3d 2782 1 (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  Vcvv 3401  {ctp 4535  cmpt 5124  dom cdm 5540  ccom 5544  Fun wfun 6363  wf 6365  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  Fincfn 8615  cr 10711  0cc0 10712  1c1 10713   · cmul 10717  cn 11813  2c2 11868  3c3 11869  ..^cfzo 13221  cprod 15448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-prod 15449
This theorem is referenced by:  hgt750lema  32321
  Copyright terms: Public domain W3C validator