Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemg Structured version   Visualization version   GIF version

Theorem hgt750lemg 32932
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemg.f 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
hgt750lemg.t (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
hgt750lemg.n (𝜑𝑁:(0..^3)⟶ℕ)
hgt750lemg.l (𝜑𝐿:ℕ⟶ℝ)
hgt750lemg.1 (𝜑𝑁𝑅)
Assertion
Ref Expression
hgt750lemg (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Distinct variable groups:   𝑁,𝑐   𝑅,𝑐   𝑇,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐹(𝑐)   𝐿(𝑐)

Proof of Theorem hgt750lemg
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6834 . . . . 5 (𝑎 = (𝑇𝑏) → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘(𝑇𝑏))))
2 tpfi 9192 . . . . . 6 {0, 1, 2} ∈ Fin
32a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ Fin)
4 hgt750lemg.t . . . . . 6 (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
5 fzo0to3tp 13578 . . . . . . 7 (0..^3) = {0, 1, 2}
6 f1oeq23 6762 . . . . . . 7 (((0..^3) = {0, 1, 2} ∧ (0..^3) = {0, 1, 2}) → (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2}))
75, 5, 6mp2an 690 . . . . . 6 (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
84, 7sylib 217 . . . . 5 (𝜑𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
9 eqidd 2738 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑇𝑏) = (𝑇𝑏))
10 hgt750lemg.l . . . . . . . 8 (𝜑𝐿:ℕ⟶ℝ)
1110adantr 482 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝐿:ℕ⟶ℝ)
12 hgt750lemg.n . . . . . . . . 9 (𝜑𝑁:(0..^3)⟶ℕ)
1312adantr 482 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑁:(0..^3)⟶ℕ)
14 simpr 486 . . . . . . . . 9 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ {0, 1, 2})
1514, 5eleqtrrdi 2849 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ (0..^3))
1613, 15ffvelcdmd 7022 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝑁𝑎) ∈ ℕ)
1711, 16ffvelcdmd 7022 . . . . . 6 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℝ)
1817recnd 11108 . . . . 5 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℂ)
191, 3, 8, 9, 18fprodf1o 15755 . . . 4 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))))
20 hgt750lemg.f . . . . . . . . . . 11 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
2120a1i 11 . . . . . . . . . 10 (𝜑𝐹 = (𝑐𝑅 ↦ (𝑐𝑇)))
22 simpr 486 . . . . . . . . . . 11 ((𝜑𝑐 = 𝑁) → 𝑐 = 𝑁)
2322coeq1d 5807 . . . . . . . . . 10 ((𝜑𝑐 = 𝑁) → (𝑐𝑇) = (𝑁𝑇))
24 hgt750lemg.1 . . . . . . . . . 10 (𝜑𝑁𝑅)
25 f1of 6771 . . . . . . . . . . . . 13 (𝑇:(0..^3)–1-1-onto→(0..^3) → 𝑇:(0..^3)⟶(0..^3))
264, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑇:(0..^3)⟶(0..^3))
27 ovexd 7376 . . . . . . . . . . . 12 (𝜑 → (0..^3) ∈ V)
2826, 27fexd 7163 . . . . . . . . . . 11 (𝜑𝑇 ∈ V)
29 coexg 7848 . . . . . . . . . . 11 ((𝑁𝑅𝑇 ∈ V) → (𝑁𝑇) ∈ V)
3024, 28, 29syl2anc 585 . . . . . . . . . 10 (𝜑 → (𝑁𝑇) ∈ V)
3121, 23, 24, 30fvmptd 6942 . . . . . . . . 9 (𝜑 → (𝐹𝑁) = (𝑁𝑇))
3231adantr 482 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐹𝑁) = (𝑁𝑇))
3332fveq1d 6831 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝐹𝑁)‘𝑏) = ((𝑁𝑇)‘𝑏))
34 f1ofun 6773 . . . . . . . . . 10 (𝑇:(0..^3)–1-1-onto→(0..^3) → Fun 𝑇)
354, 34syl 17 . . . . . . . . 9 (𝜑 → Fun 𝑇)
3635adantr 482 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → Fun 𝑇)
37 f1odm 6775 . . . . . . . . . . 11 (𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2} → dom 𝑇 = {0, 1, 2})
388, 37syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑇 = {0, 1, 2})
3938eleq2d 2823 . . . . . . . . 9 (𝜑 → (𝑏 ∈ dom 𝑇𝑏 ∈ {0, 1, 2}))
4039biimpar 479 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → 𝑏 ∈ dom 𝑇)
41 fvco 6926 . . . . . . . 8 ((Fun 𝑇𝑏 ∈ dom 𝑇) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4236, 40, 41syl2anc 585 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4333, 42eqtr2d 2778 . . . . . 6 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑁‘(𝑇𝑏)) = ((𝐹𝑁)‘𝑏))
4443fveq2d 6833 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘(𝑇𝑏))) = (𝐿‘((𝐹𝑁)‘𝑏)))
4544prodeq2dv 15732 . . . 4 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)))
4619, 45eqtr2d 2778 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)))
47 2fveq3 6834 . . . 4 (𝑏 = 0 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘0)))
48 2fveq3 6834 . . . 4 (𝑏 = 1 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘1)))
49 c0ex 11074 . . . . 5 0 ∈ V
5049a1i 11 . . . 4 (𝜑 → 0 ∈ V)
51 1ex 11076 . . . . 5 1 ∈ V
5251a1i 11 . . . 4 (𝜑 → 1 ∈ V)
5331fveq1d 6831 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘0) = ((𝑁𝑇)‘0))
5449tpid1 4720 . . . . . . . . . 10 0 ∈ {0, 1, 2}
5554, 38eleqtrrid 2845 . . . . . . . . 9 (𝜑 → 0 ∈ dom 𝑇)
56 fvco 6926 . . . . . . . . 9 ((Fun 𝑇 ∧ 0 ∈ dom 𝑇) → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5735, 55, 56syl2anc 585 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5853, 57eqtrd 2777 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘0) = (𝑁‘(𝑇‘0)))
5954, 5eleqtrri 2837 . . . . . . . . . 10 0 ∈ (0..^3)
6059a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^3))
6126, 60ffvelcdmd 7022 . . . . . . . 8 (𝜑 → (𝑇‘0) ∈ (0..^3))
6212, 61ffvelcdmd 7022 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘0)) ∈ ℕ)
6358, 62eqeltrd 2838 . . . . . 6 (𝜑 → ((𝐹𝑁)‘0) ∈ ℕ)
6410, 63ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℝ)
6564recnd 11108 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℂ)
6631fveq1d 6831 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘1) = ((𝑁𝑇)‘1))
6751tpid2 4722 . . . . . . . . . 10 1 ∈ {0, 1, 2}
6867, 38eleqtrrid 2845 . . . . . . . . 9 (𝜑 → 1 ∈ dom 𝑇)
69 fvco 6926 . . . . . . . . 9 ((Fun 𝑇 ∧ 1 ∈ dom 𝑇) → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7035, 68, 69syl2anc 585 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7166, 70eqtrd 2777 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘1) = (𝑁‘(𝑇‘1)))
7267, 5eleqtrri 2837 . . . . . . . . . 10 1 ∈ (0..^3)
7372a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ (0..^3))
7426, 73ffvelcdmd 7022 . . . . . . . 8 (𝜑 → (𝑇‘1) ∈ (0..^3))
7512, 74ffvelcdmd 7022 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘1)) ∈ ℕ)
7671, 75eqeltrd 2838 . . . . . 6 (𝜑 → ((𝐹𝑁)‘1) ∈ ℕ)
7710, 76ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℝ)
7877recnd 11108 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℂ)
79 0ne1 12149 . . . . 5 0 ≠ 1
8079a1i 11 . . . 4 (𝜑 → 0 ≠ 1)
81 2fveq3 6834 . . . 4 (𝑏 = 2 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘2)))
82 2ex 12155 . . . . 5 2 ∈ V
8382a1i 11 . . . 4 (𝜑 → 2 ∈ V)
8431fveq1d 6831 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘2) = ((𝑁𝑇)‘2))
8582tpid3 4725 . . . . . . . . . 10 2 ∈ {0, 1, 2}
8685, 38eleqtrrid 2845 . . . . . . . . 9 (𝜑 → 2 ∈ dom 𝑇)
87 fvco 6926 . . . . . . . . 9 ((Fun 𝑇 ∧ 2 ∈ dom 𝑇) → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8835, 86, 87syl2anc 585 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8984, 88eqtrd 2777 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘2) = (𝑁‘(𝑇‘2)))
9085, 5eleqtrri 2837 . . . . . . . . . 10 2 ∈ (0..^3)
9190a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ (0..^3))
9226, 91ffvelcdmd 7022 . . . . . . . 8 (𝜑 → (𝑇‘2) ∈ (0..^3))
9312, 92ffvelcdmd 7022 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘2)) ∈ ℕ)
9489, 93eqeltrd 2838 . . . . . 6 (𝜑 → ((𝐹𝑁)‘2) ∈ ℕ)
9510, 94ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℝ)
9695recnd 11108 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℂ)
97 0ne2 12285 . . . . 5 0 ≠ 2
9897a1i 11 . . . 4 (𝜑 → 0 ≠ 2)
99 1ne2 12286 . . . . 5 1 ≠ 2
10099a1i 11 . . . 4 (𝜑 → 1 ≠ 2)
10147, 48, 50, 52, 65, 78, 80, 81, 83, 96, 98, 100prodtp 31426 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))))
102 2fveq3 6834 . . . 4 (𝑎 = 0 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘0)))
103 2fveq3 6834 . . . 4 (𝑎 = 1 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘1)))
10412, 60ffvelcdmd 7022 . . . . . 6 (𝜑 → (𝑁‘0) ∈ ℕ)
10510, 104ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℝ)
106105recnd 11108 . . . 4 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℂ)
10712, 73ffvelcdmd 7022 . . . . . 6 (𝜑 → (𝑁‘1) ∈ ℕ)
10810, 107ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℝ)
109108recnd 11108 . . . 4 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℂ)
110 2fveq3 6834 . . . 4 (𝑎 = 2 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘2)))
11112, 91ffvelcdmd 7022 . . . . . 6 (𝜑 → (𝑁‘2) ∈ ℕ)
11210, 111ffvelcdmd 7022 . . . . 5 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℝ)
113112recnd 11108 . . . 4 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℂ)
114102, 103, 50, 52, 106, 109, 80, 110, 83, 113, 98, 100prodtp 31426 . . 3 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11546, 101, 1143eqtr3d 2785 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11665, 78, 96mulassd 11103 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))))
117106, 109, 113mulassd 11103 . 2 (𝜑 → (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
118115, 116, 1173eqtr3d 2785 1 (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wne 2941  Vcvv 3442  {ctp 4581  cmpt 5179  dom cdm 5624  ccom 5628  Fun wfun 6477  wf 6479  1-1-ontowf1o 6482  cfv 6483  (class class class)co 7341  Fincfn 8808  cr 10975  0cc0 10976  1c1 10977   · cmul 10981  cn 12078  2c2 12133  3c3 12134  ..^cfzo 13487  cprod 15714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-oi 9371  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-fzo 13488  df-seq 13827  df-exp 13888  df-hash 14150  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-prod 15715
This theorem is referenced by:  hgt750lema  32935
  Copyright terms: Public domain W3C validator