Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemg Structured version   Visualization version   GIF version

Theorem hgt750lemg 34155
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemg.f 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇))
hgt750lemg.t (πœ‘ β†’ 𝑇:(0..^3)–1-1-ontoβ†’(0..^3))
hgt750lemg.n (πœ‘ β†’ 𝑁:(0..^3)βŸΆβ„•)
hgt750lemg.l (πœ‘ β†’ 𝐿:β„•βŸΆβ„)
hgt750lemg.1 (πœ‘ β†’ 𝑁 ∈ 𝑅)
Assertion
Ref Expression
hgt750lemg (πœ‘ β†’ ((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· ((πΏβ€˜((πΉβ€˜π‘)β€˜1)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2)))) = ((πΏβ€˜(π‘β€˜0)) Β· ((πΏβ€˜(π‘β€˜1)) Β· (πΏβ€˜(π‘β€˜2)))))
Distinct variable groups:   𝑁,𝑐   𝑅,𝑐   𝑇,𝑐   πœ‘,𝑐
Allowed substitution hints:   𝐹(𝑐)   𝐿(𝑐)

Proof of Theorem hgt750lemg
Dummy variables 𝑏 π‘Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6886 . . . . 5 (π‘Ž = (π‘‡β€˜π‘) β†’ (πΏβ€˜(π‘β€˜π‘Ž)) = (πΏβ€˜(π‘β€˜(π‘‡β€˜π‘))))
2 tpfi 9319 . . . . . 6 {0, 1, 2} ∈ Fin
32a1i 11 . . . . 5 (πœ‘ β†’ {0, 1, 2} ∈ Fin)
4 hgt750lemg.t . . . . . 6 (πœ‘ β†’ 𝑇:(0..^3)–1-1-ontoβ†’(0..^3))
5 fzo0to3tp 13715 . . . . . . 7 (0..^3) = {0, 1, 2}
6 f1oeq23 6814 . . . . . . 7 (((0..^3) = {0, 1, 2} ∧ (0..^3) = {0, 1, 2}) β†’ (𝑇:(0..^3)–1-1-ontoβ†’(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-ontoβ†’{0, 1, 2}))
75, 5, 6mp2an 689 . . . . . 6 (𝑇:(0..^3)–1-1-ontoβ†’(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-ontoβ†’{0, 1, 2})
84, 7sylib 217 . . . . 5 (πœ‘ β†’ 𝑇:{0, 1, 2}–1-1-ontoβ†’{0, 1, 2})
9 eqidd 2725 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ (π‘‡β€˜π‘) = (π‘‡β€˜π‘))
10 hgt750lemg.l . . . . . . . 8 (πœ‘ β†’ 𝐿:β„•βŸΆβ„)
1110adantr 480 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ 𝐿:β„•βŸΆβ„)
12 hgt750lemg.n . . . . . . . . 9 (πœ‘ β†’ 𝑁:(0..^3)βŸΆβ„•)
1312adantr 480 . . . . . . . 8 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ 𝑁:(0..^3)βŸΆβ„•)
14 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ π‘Ž ∈ {0, 1, 2})
1514, 5eleqtrrdi 2836 . . . . . . . 8 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ π‘Ž ∈ (0..^3))
1613, 15ffvelcdmd 7077 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ (π‘β€˜π‘Ž) ∈ β„•)
1711, 16ffvelcdmd 7077 . . . . . 6 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ (πΏβ€˜(π‘β€˜π‘Ž)) ∈ ℝ)
1817recnd 11239 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ {0, 1, 2}) β†’ (πΏβ€˜(π‘β€˜π‘Ž)) ∈ β„‚)
191, 3, 8, 9, 18fprodf1o 15887 . . . 4 (πœ‘ β†’ βˆπ‘Ž ∈ {0, 1, 2} (πΏβ€˜(π‘β€˜π‘Ž)) = βˆπ‘ ∈ {0, 1, 2} (πΏβ€˜(π‘β€˜(π‘‡β€˜π‘))))
20 hgt750lemg.f . . . . . . . . . . 11 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇))
2120a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇)))
22 simpr 484 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑐 = 𝑁) β†’ 𝑐 = 𝑁)
2322coeq1d 5851 . . . . . . . . . 10 ((πœ‘ ∧ 𝑐 = 𝑁) β†’ (𝑐 ∘ 𝑇) = (𝑁 ∘ 𝑇))
24 hgt750lemg.1 . . . . . . . . . 10 (πœ‘ β†’ 𝑁 ∈ 𝑅)
25 f1of 6823 . . . . . . . . . . . . 13 (𝑇:(0..^3)–1-1-ontoβ†’(0..^3) β†’ 𝑇:(0..^3)⟢(0..^3))
264, 25syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑇:(0..^3)⟢(0..^3))
27 ovexd 7436 . . . . . . . . . . . 12 (πœ‘ β†’ (0..^3) ∈ V)
2826, 27fexd 7220 . . . . . . . . . . 11 (πœ‘ β†’ 𝑇 ∈ V)
29 coexg 7913 . . . . . . . . . . 11 ((𝑁 ∈ 𝑅 ∧ 𝑇 ∈ V) β†’ (𝑁 ∘ 𝑇) ∈ V)
3024, 28, 29syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (𝑁 ∘ 𝑇) ∈ V)
3121, 23, 24, 30fvmptd 6995 . . . . . . . . 9 (πœ‘ β†’ (πΉβ€˜π‘) = (𝑁 ∘ 𝑇))
3231adantr 480 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ (πΉβ€˜π‘) = (𝑁 ∘ 𝑇))
3332fveq1d 6883 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ ((πΉβ€˜π‘)β€˜π‘) = ((𝑁 ∘ 𝑇)β€˜π‘))
34 f1ofun 6825 . . . . . . . . . 10 (𝑇:(0..^3)–1-1-ontoβ†’(0..^3) β†’ Fun 𝑇)
354, 34syl 17 . . . . . . . . 9 (πœ‘ β†’ Fun 𝑇)
3635adantr 480 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ Fun 𝑇)
37 f1odm 6827 . . . . . . . . . . 11 (𝑇:{0, 1, 2}–1-1-ontoβ†’{0, 1, 2} β†’ dom 𝑇 = {0, 1, 2})
388, 37syl 17 . . . . . . . . . 10 (πœ‘ β†’ dom 𝑇 = {0, 1, 2})
3938eleq2d 2811 . . . . . . . . 9 (πœ‘ β†’ (𝑏 ∈ dom 𝑇 ↔ 𝑏 ∈ {0, 1, 2}))
4039biimpar 477 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ 𝑏 ∈ dom 𝑇)
41 fvco 6979 . . . . . . . 8 ((Fun 𝑇 ∧ 𝑏 ∈ dom 𝑇) β†’ ((𝑁 ∘ 𝑇)β€˜π‘) = (π‘β€˜(π‘‡β€˜π‘)))
4236, 40, 41syl2anc 583 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ ((𝑁 ∘ 𝑇)β€˜π‘) = (π‘β€˜(π‘‡β€˜π‘)))
4333, 42eqtr2d 2765 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ (π‘β€˜(π‘‡β€˜π‘)) = ((πΉβ€˜π‘)β€˜π‘))
4443fveq2d 6885 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ {0, 1, 2}) β†’ (πΏβ€˜(π‘β€˜(π‘‡β€˜π‘))) = (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)))
4544prodeq2dv 15864 . . . 4 (πœ‘ β†’ βˆπ‘ ∈ {0, 1, 2} (πΏβ€˜(π‘β€˜(π‘‡β€˜π‘))) = βˆπ‘ ∈ {0, 1, 2} (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)))
4619, 45eqtr2d 2765 . . 3 (πœ‘ β†’ βˆπ‘ ∈ {0, 1, 2} (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)) = βˆπ‘Ž ∈ {0, 1, 2} (πΏβ€˜(π‘β€˜π‘Ž)))
47 2fveq3 6886 . . . 4 (𝑏 = 0 β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)) = (πΏβ€˜((πΉβ€˜π‘)β€˜0)))
48 2fveq3 6886 . . . 4 (𝑏 = 1 β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)) = (πΏβ€˜((πΉβ€˜π‘)β€˜1)))
49 c0ex 11205 . . . . 5 0 ∈ V
5049a1i 11 . . . 4 (πœ‘ β†’ 0 ∈ V)
51 1ex 11207 . . . . 5 1 ∈ V
5251a1i 11 . . . 4 (πœ‘ β†’ 1 ∈ V)
5331fveq1d 6883 . . . . . . . 8 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜0) = ((𝑁 ∘ 𝑇)β€˜0))
5449tpid1 4764 . . . . . . . . . 10 0 ∈ {0, 1, 2}
5554, 38eleqtrrid 2832 . . . . . . . . 9 (πœ‘ β†’ 0 ∈ dom 𝑇)
56 fvco 6979 . . . . . . . . 9 ((Fun 𝑇 ∧ 0 ∈ dom 𝑇) β†’ ((𝑁 ∘ 𝑇)β€˜0) = (π‘β€˜(π‘‡β€˜0)))
5735, 55, 56syl2anc 583 . . . . . . . 8 (πœ‘ β†’ ((𝑁 ∘ 𝑇)β€˜0) = (π‘β€˜(π‘‡β€˜0)))
5853, 57eqtrd 2764 . . . . . . 7 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜0) = (π‘β€˜(π‘‡β€˜0)))
5954, 5eleqtrri 2824 . . . . . . . . . 10 0 ∈ (0..^3)
6059a1i 11 . . . . . . . . 9 (πœ‘ β†’ 0 ∈ (0..^3))
6126, 60ffvelcdmd 7077 . . . . . . . 8 (πœ‘ β†’ (π‘‡β€˜0) ∈ (0..^3))
6212, 61ffvelcdmd 7077 . . . . . . 7 (πœ‘ β†’ (π‘β€˜(π‘‡β€˜0)) ∈ β„•)
6358, 62eqeltrd 2825 . . . . . 6 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜0) ∈ β„•)
6410, 63ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜0)) ∈ ℝ)
6564recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜0)) ∈ β„‚)
6631fveq1d 6883 . . . . . . . 8 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜1) = ((𝑁 ∘ 𝑇)β€˜1))
6751tpid2 4766 . . . . . . . . . 10 1 ∈ {0, 1, 2}
6867, 38eleqtrrid 2832 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ dom 𝑇)
69 fvco 6979 . . . . . . . . 9 ((Fun 𝑇 ∧ 1 ∈ dom 𝑇) β†’ ((𝑁 ∘ 𝑇)β€˜1) = (π‘β€˜(π‘‡β€˜1)))
7035, 68, 69syl2anc 583 . . . . . . . 8 (πœ‘ β†’ ((𝑁 ∘ 𝑇)β€˜1) = (π‘β€˜(π‘‡β€˜1)))
7166, 70eqtrd 2764 . . . . . . 7 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜1) = (π‘β€˜(π‘‡β€˜1)))
7267, 5eleqtrri 2824 . . . . . . . . . 10 1 ∈ (0..^3)
7372a1i 11 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ (0..^3))
7426, 73ffvelcdmd 7077 . . . . . . . 8 (πœ‘ β†’ (π‘‡β€˜1) ∈ (0..^3))
7512, 74ffvelcdmd 7077 . . . . . . 7 (πœ‘ β†’ (π‘β€˜(π‘‡β€˜1)) ∈ β„•)
7671, 75eqeltrd 2825 . . . . . 6 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜1) ∈ β„•)
7710, 76ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜1)) ∈ ℝ)
7877recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜1)) ∈ β„‚)
79 0ne1 12280 . . . . 5 0 β‰  1
8079a1i 11 . . . 4 (πœ‘ β†’ 0 β‰  1)
81 2fveq3 6886 . . . 4 (𝑏 = 2 β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)) = (πΏβ€˜((πΉβ€˜π‘)β€˜2)))
82 2ex 12286 . . . . 5 2 ∈ V
8382a1i 11 . . . 4 (πœ‘ β†’ 2 ∈ V)
8431fveq1d 6883 . . . . . . . 8 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜2) = ((𝑁 ∘ 𝑇)β€˜2))
8582tpid3 4769 . . . . . . . . . 10 2 ∈ {0, 1, 2}
8685, 38eleqtrrid 2832 . . . . . . . . 9 (πœ‘ β†’ 2 ∈ dom 𝑇)
87 fvco 6979 . . . . . . . . 9 ((Fun 𝑇 ∧ 2 ∈ dom 𝑇) β†’ ((𝑁 ∘ 𝑇)β€˜2) = (π‘β€˜(π‘‡β€˜2)))
8835, 86, 87syl2anc 583 . . . . . . . 8 (πœ‘ β†’ ((𝑁 ∘ 𝑇)β€˜2) = (π‘β€˜(π‘‡β€˜2)))
8984, 88eqtrd 2764 . . . . . . 7 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜2) = (π‘β€˜(π‘‡β€˜2)))
9085, 5eleqtrri 2824 . . . . . . . . . 10 2 ∈ (0..^3)
9190a1i 11 . . . . . . . . 9 (πœ‘ β†’ 2 ∈ (0..^3))
9226, 91ffvelcdmd 7077 . . . . . . . 8 (πœ‘ β†’ (π‘‡β€˜2) ∈ (0..^3))
9312, 92ffvelcdmd 7077 . . . . . . 7 (πœ‘ β†’ (π‘β€˜(π‘‡β€˜2)) ∈ β„•)
9489, 93eqeltrd 2825 . . . . . 6 (πœ‘ β†’ ((πΉβ€˜π‘)β€˜2) ∈ β„•)
9510, 94ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜2)) ∈ ℝ)
9695recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜((πΉβ€˜π‘)β€˜2)) ∈ β„‚)
97 0ne2 12416 . . . . 5 0 β‰  2
9897a1i 11 . . . 4 (πœ‘ β†’ 0 β‰  2)
99 1ne2 12417 . . . . 5 1 β‰  2
10099a1i 11 . . . 4 (πœ‘ β†’ 1 β‰  2)
10147, 48, 50, 52, 65, 78, 80, 81, 83, 96, 98, 100prodtp 32500 . . 3 (πœ‘ β†’ βˆπ‘ ∈ {0, 1, 2} (πΏβ€˜((πΉβ€˜π‘)β€˜π‘)) = (((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜1))) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2))))
102 2fveq3 6886 . . . 4 (π‘Ž = 0 β†’ (πΏβ€˜(π‘β€˜π‘Ž)) = (πΏβ€˜(π‘β€˜0)))
103 2fveq3 6886 . . . 4 (π‘Ž = 1 β†’ (πΏβ€˜(π‘β€˜π‘Ž)) = (πΏβ€˜(π‘β€˜1)))
10412, 60ffvelcdmd 7077 . . . . . 6 (πœ‘ β†’ (π‘β€˜0) ∈ β„•)
10510, 104ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜(π‘β€˜0)) ∈ ℝ)
106105recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜(π‘β€˜0)) ∈ β„‚)
10712, 73ffvelcdmd 7077 . . . . . 6 (πœ‘ β†’ (π‘β€˜1) ∈ β„•)
10810, 107ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜(π‘β€˜1)) ∈ ℝ)
109108recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜(π‘β€˜1)) ∈ β„‚)
110 2fveq3 6886 . . . 4 (π‘Ž = 2 β†’ (πΏβ€˜(π‘β€˜π‘Ž)) = (πΏβ€˜(π‘β€˜2)))
11112, 91ffvelcdmd 7077 . . . . . 6 (πœ‘ β†’ (π‘β€˜2) ∈ β„•)
11210, 111ffvelcdmd 7077 . . . . 5 (πœ‘ β†’ (πΏβ€˜(π‘β€˜2)) ∈ ℝ)
113112recnd 11239 . . . 4 (πœ‘ β†’ (πΏβ€˜(π‘β€˜2)) ∈ β„‚)
114102, 103, 50, 52, 106, 109, 80, 110, 83, 113, 98, 100prodtp 32500 . . 3 (πœ‘ β†’ βˆπ‘Ž ∈ {0, 1, 2} (πΏβ€˜(π‘β€˜π‘Ž)) = (((πΏβ€˜(π‘β€˜0)) Β· (πΏβ€˜(π‘β€˜1))) Β· (πΏβ€˜(π‘β€˜2))))
11546, 101, 1143eqtr3d 2772 . 2 (πœ‘ β†’ (((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜1))) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2))) = (((πΏβ€˜(π‘β€˜0)) Β· (πΏβ€˜(π‘β€˜1))) Β· (πΏβ€˜(π‘β€˜2))))
11665, 78, 96mulassd 11234 . 2 (πœ‘ β†’ (((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜1))) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2))) = ((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· ((πΏβ€˜((πΉβ€˜π‘)β€˜1)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2)))))
117106, 109, 113mulassd 11234 . 2 (πœ‘ β†’ (((πΏβ€˜(π‘β€˜0)) Β· (πΏβ€˜(π‘β€˜1))) Β· (πΏβ€˜(π‘β€˜2))) = ((πΏβ€˜(π‘β€˜0)) Β· ((πΏβ€˜(π‘β€˜1)) Β· (πΏβ€˜(π‘β€˜2)))))
118115, 116, 1173eqtr3d 2772 1 (πœ‘ β†’ ((πΏβ€˜((πΉβ€˜π‘)β€˜0)) Β· ((πΏβ€˜((πΉβ€˜π‘)β€˜1)) Β· (πΏβ€˜((πΉβ€˜π‘)β€˜2)))) = ((πΏβ€˜(π‘β€˜0)) Β· ((πΏβ€˜(π‘β€˜1)) Β· (πΏβ€˜(π‘β€˜2)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  Vcvv 3466  {ctp 4624   ↦ cmpt 5221  dom cdm 5666   ∘ ccom 5670  Fun wfun 6527  βŸΆwf 6529  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401  Fincfn 8935  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111  β„•cn 12209  2c2 12264  3c3 12265  ..^cfzo 13624  βˆcprod 15846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-prod 15847
This theorem is referenced by:  hgt750lema  34158
  Copyright terms: Public domain W3C validator