Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemg Structured version   Visualization version   GIF version

Theorem hgt750lemg 34631
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemg.f 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
hgt750lemg.t (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
hgt750lemg.n (𝜑𝑁:(0..^3)⟶ℕ)
hgt750lemg.l (𝜑𝐿:ℕ⟶ℝ)
hgt750lemg.1 (𝜑𝑁𝑅)
Assertion
Ref Expression
hgt750lemg (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Distinct variable groups:   𝑁,𝑐   𝑅,𝑐   𝑇,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐹(𝑐)   𝐿(𝑐)

Proof of Theorem hgt750lemg
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6925 . . . . 5 (𝑎 = (𝑇𝑏) → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘(𝑇𝑏))))
2 tpfi 9393 . . . . . 6 {0, 1, 2} ∈ Fin
32a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ Fin)
4 hgt750lemg.t . . . . . 6 (𝜑𝑇:(0..^3)–1-1-onto→(0..^3))
5 fzo0to3tp 13802 . . . . . . 7 (0..^3) = {0, 1, 2}
6 f1oeq23 6853 . . . . . . 7 (((0..^3) = {0, 1, 2} ∧ (0..^3) = {0, 1, 2}) → (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2}))
75, 5, 6mp2an 691 . . . . . 6 (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
84, 7sylib 218 . . . . 5 (𝜑𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2})
9 eqidd 2741 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑇𝑏) = (𝑇𝑏))
10 hgt750lemg.l . . . . . . . 8 (𝜑𝐿:ℕ⟶ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝐿:ℕ⟶ℝ)
12 hgt750lemg.n . . . . . . . . 9 (𝜑𝑁:(0..^3)⟶ℕ)
1312adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑁:(0..^3)⟶ℕ)
14 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ {0, 1, 2})
1514, 5eleqtrrdi 2855 . . . . . . . 8 ((𝜑𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ (0..^3))
1613, 15ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝑁𝑎) ∈ ℕ)
1711, 16ffvelcdmd 7119 . . . . . 6 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℝ)
1817recnd 11318 . . . . 5 ((𝜑𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁𝑎)) ∈ ℂ)
191, 3, 8, 9, 18fprodf1o 15994 . . . 4 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))))
20 hgt750lemg.f . . . . . . . . . . 11 𝐹 = (𝑐𝑅 ↦ (𝑐𝑇))
2120a1i 11 . . . . . . . . . 10 (𝜑𝐹 = (𝑐𝑅 ↦ (𝑐𝑇)))
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑐 = 𝑁) → 𝑐 = 𝑁)
2322coeq1d 5886 . . . . . . . . . 10 ((𝜑𝑐 = 𝑁) → (𝑐𝑇) = (𝑁𝑇))
24 hgt750lemg.1 . . . . . . . . . 10 (𝜑𝑁𝑅)
25 f1of 6862 . . . . . . . . . . . . 13 (𝑇:(0..^3)–1-1-onto→(0..^3) → 𝑇:(0..^3)⟶(0..^3))
264, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑇:(0..^3)⟶(0..^3))
27 ovexd 7483 . . . . . . . . . . . 12 (𝜑 → (0..^3) ∈ V)
2826, 27fexd 7264 . . . . . . . . . . 11 (𝜑𝑇 ∈ V)
29 coexg 7969 . . . . . . . . . . 11 ((𝑁𝑅𝑇 ∈ V) → (𝑁𝑇) ∈ V)
3024, 28, 29syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑁𝑇) ∈ V)
3121, 23, 24, 30fvmptd 7036 . . . . . . . . 9 (𝜑 → (𝐹𝑁) = (𝑁𝑇))
3231adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐹𝑁) = (𝑁𝑇))
3332fveq1d 6922 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝐹𝑁)‘𝑏) = ((𝑁𝑇)‘𝑏))
34 f1ofun 6864 . . . . . . . . . 10 (𝑇:(0..^3)–1-1-onto→(0..^3) → Fun 𝑇)
354, 34syl 17 . . . . . . . . 9 (𝜑 → Fun 𝑇)
3635adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → Fun 𝑇)
37 f1odm 6866 . . . . . . . . . . 11 (𝑇:{0, 1, 2}–1-1-onto→{0, 1, 2} → dom 𝑇 = {0, 1, 2})
388, 37syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑇 = {0, 1, 2})
3938eleq2d 2830 . . . . . . . . 9 (𝜑 → (𝑏 ∈ dom 𝑇𝑏 ∈ {0, 1, 2}))
4039biimpar 477 . . . . . . . 8 ((𝜑𝑏 ∈ {0, 1, 2}) → 𝑏 ∈ dom 𝑇)
41 fvco 7020 . . . . . . . 8 ((Fun 𝑇𝑏 ∈ dom 𝑇) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4236, 40, 41syl2anc 583 . . . . . . 7 ((𝜑𝑏 ∈ {0, 1, 2}) → ((𝑁𝑇)‘𝑏) = (𝑁‘(𝑇𝑏)))
4333, 42eqtr2d 2781 . . . . . 6 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝑁‘(𝑇𝑏)) = ((𝐹𝑁)‘𝑏))
4443fveq2d 6924 . . . . 5 ((𝜑𝑏 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘(𝑇𝑏))) = (𝐿‘((𝐹𝑁)‘𝑏)))
4544prodeq2dv 15970 . . . 4 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇𝑏))) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)))
4619, 45eqtr2d 2781 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)))
47 2fveq3 6925 . . . 4 (𝑏 = 0 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘0)))
48 2fveq3 6925 . . . 4 (𝑏 = 1 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘1)))
49 c0ex 11284 . . . . 5 0 ∈ V
5049a1i 11 . . . 4 (𝜑 → 0 ∈ V)
51 1ex 11286 . . . . 5 1 ∈ V
5251a1i 11 . . . 4 (𝜑 → 1 ∈ V)
5331fveq1d 6922 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘0) = ((𝑁𝑇)‘0))
5449tpid1 4793 . . . . . . . . . 10 0 ∈ {0, 1, 2}
5554, 38eleqtrrid 2851 . . . . . . . . 9 (𝜑 → 0 ∈ dom 𝑇)
56 fvco 7020 . . . . . . . . 9 ((Fun 𝑇 ∧ 0 ∈ dom 𝑇) → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5735, 55, 56syl2anc 583 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘0) = (𝑁‘(𝑇‘0)))
5853, 57eqtrd 2780 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘0) = (𝑁‘(𝑇‘0)))
5954, 5eleqtrri 2843 . . . . . . . . . 10 0 ∈ (0..^3)
6059a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^3))
6126, 60ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝑇‘0) ∈ (0..^3))
6212, 61ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘0)) ∈ ℕ)
6358, 62eqeltrd 2844 . . . . . 6 (𝜑 → ((𝐹𝑁)‘0) ∈ ℕ)
6410, 63ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℝ)
6564recnd 11318 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘0)) ∈ ℂ)
6631fveq1d 6922 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘1) = ((𝑁𝑇)‘1))
6751tpid2 4795 . . . . . . . . . 10 1 ∈ {0, 1, 2}
6867, 38eleqtrrid 2851 . . . . . . . . 9 (𝜑 → 1 ∈ dom 𝑇)
69 fvco 7020 . . . . . . . . 9 ((Fun 𝑇 ∧ 1 ∈ dom 𝑇) → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7035, 68, 69syl2anc 583 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘1) = (𝑁‘(𝑇‘1)))
7166, 70eqtrd 2780 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘1) = (𝑁‘(𝑇‘1)))
7267, 5eleqtrri 2843 . . . . . . . . . 10 1 ∈ (0..^3)
7372a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ (0..^3))
7426, 73ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝑇‘1) ∈ (0..^3))
7512, 74ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘1)) ∈ ℕ)
7671, 75eqeltrd 2844 . . . . . 6 (𝜑 → ((𝐹𝑁)‘1) ∈ ℕ)
7710, 76ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℝ)
7877recnd 11318 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘1)) ∈ ℂ)
79 0ne1 12364 . . . . 5 0 ≠ 1
8079a1i 11 . . . 4 (𝜑 → 0 ≠ 1)
81 2fveq3 6925 . . . 4 (𝑏 = 2 → (𝐿‘((𝐹𝑁)‘𝑏)) = (𝐿‘((𝐹𝑁)‘2)))
82 2ex 12370 . . . . 5 2 ∈ V
8382a1i 11 . . . 4 (𝜑 → 2 ∈ V)
8431fveq1d 6922 . . . . . . . 8 (𝜑 → ((𝐹𝑁)‘2) = ((𝑁𝑇)‘2))
8582tpid3 4798 . . . . . . . . . 10 2 ∈ {0, 1, 2}
8685, 38eleqtrrid 2851 . . . . . . . . 9 (𝜑 → 2 ∈ dom 𝑇)
87 fvco 7020 . . . . . . . . 9 ((Fun 𝑇 ∧ 2 ∈ dom 𝑇) → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8835, 86, 87syl2anc 583 . . . . . . . 8 (𝜑 → ((𝑁𝑇)‘2) = (𝑁‘(𝑇‘2)))
8984, 88eqtrd 2780 . . . . . . 7 (𝜑 → ((𝐹𝑁)‘2) = (𝑁‘(𝑇‘2)))
9085, 5eleqtrri 2843 . . . . . . . . . 10 2 ∈ (0..^3)
9190a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ (0..^3))
9226, 91ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝑇‘2) ∈ (0..^3))
9312, 92ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑁‘(𝑇‘2)) ∈ ℕ)
9489, 93eqeltrd 2844 . . . . . 6 (𝜑 → ((𝐹𝑁)‘2) ∈ ℕ)
9510, 94ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℝ)
9695recnd 11318 . . . 4 (𝜑 → (𝐿‘((𝐹𝑁)‘2)) ∈ ℂ)
97 0ne2 12500 . . . . 5 0 ≠ 2
9897a1i 11 . . . 4 (𝜑 → 0 ≠ 2)
99 1ne2 12501 . . . . 5 1 ≠ 2
10099a1i 11 . . . 4 (𝜑 → 1 ≠ 2)
10147, 48, 50, 52, 65, 78, 80, 81, 83, 96, 98, 100prodtp 32831 . . 3 (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹𝑁)‘𝑏)) = (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))))
102 2fveq3 6925 . . . 4 (𝑎 = 0 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘0)))
103 2fveq3 6925 . . . 4 (𝑎 = 1 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘1)))
10412, 60ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝑁‘0) ∈ ℕ)
10510, 104ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℝ)
106105recnd 11318 . . . 4 (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℂ)
10712, 73ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝑁‘1) ∈ ℕ)
10810, 107ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℝ)
109108recnd 11318 . . . 4 (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℂ)
110 2fveq3 6925 . . . 4 (𝑎 = 2 → (𝐿‘(𝑁𝑎)) = (𝐿‘(𝑁‘2)))
11112, 91ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝑁‘2) ∈ ℕ)
11210, 111ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℝ)
113112recnd 11318 . . . 4 (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℂ)
114102, 103, 50, 52, 106, 109, 80, 110, 83, 113, 98, 100prodtp 32831 . . 3 (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁𝑎)) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11546, 101, 1143eqtr3d 2788 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))))
11665, 78, 96mulassd 11313 . 2 (𝜑 → (((𝐿‘((𝐹𝑁)‘0)) · (𝐿‘((𝐹𝑁)‘1))) · (𝐿‘((𝐹𝑁)‘2))) = ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))))
117106, 109, 113mulassd 11313 . 2 (𝜑 → (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
118115, 116, 1173eqtr3d 2788 1 (𝜑 → ((𝐿‘((𝐹𝑁)‘0)) · ((𝐿‘((𝐹𝑁)‘1)) · (𝐿‘((𝐹𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  {ctp 4652  cmpt 5249  dom cdm 5700  ccom 5704  Fun wfun 6567  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  2c2 12348  3c3 12349  ..^cfzo 13711  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952
This theorem is referenced by:  hgt750lema  34634
  Copyright terms: Public domain W3C validator