Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑎 = (𝑇‘𝑏) → (𝐿‘(𝑁‘𝑎)) = (𝐿‘(𝑁‘(𝑇‘𝑏)))) |
2 | | tpfi 9090 |
. . . . . 6
⊢ {0, 1, 2}
∈ Fin |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → {0, 1, 2} ∈
Fin) |
4 | | hgt750lemg.t |
. . . . . 6
⊢ (𝜑 → 𝑇:(0..^3)–1-1-onto→(0..^3)) |
5 | | fzo0to3tp 13473 |
. . . . . . 7
⊢ (0..^3) =
{0, 1, 2} |
6 | | f1oeq23 6707 |
. . . . . . 7
⊢ (((0..^3)
= {0, 1, 2} ∧ (0..^3) = {0, 1, 2}) → (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0,
1, 2})) |
7 | 5, 5, 6 | mp2an 689 |
. . . . . 6
⊢ (𝑇:(0..^3)–1-1-onto→(0..^3) ↔ 𝑇:{0, 1, 2}–1-1-onto→{0,
1, 2}) |
8 | 4, 7 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝑇:{0, 1, 2}–1-1-onto→{0,
1, 2}) |
9 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → (𝑇‘𝑏) = (𝑇‘𝑏)) |
10 | | hgt750lemg.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿:ℕ⟶ℝ) |
11 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → 𝐿:ℕ⟶ℝ) |
12 | | hgt750lemg.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁:(0..^3)⟶ℕ) |
13 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → 𝑁:(0..^3)⟶ℕ) |
14 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ {0, 1, 2}) |
15 | 14, 5 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → 𝑎 ∈ (0..^3)) |
16 | 13, 15 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → (𝑁‘𝑎) ∈ ℕ) |
17 | 11, 16 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘𝑎)) ∈ ℝ) |
18 | 17 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘𝑎)) ∈ ℂ) |
19 | 1, 3, 8, 9, 18 | fprodf1o 15656 |
. . . 4
⊢ (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁‘𝑎)) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇‘𝑏)))) |
20 | | hgt750lemg.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇)) |
21 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇))) |
22 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 = 𝑁) → 𝑐 = 𝑁) |
23 | 22 | coeq1d 5770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 = 𝑁) → (𝑐 ∘ 𝑇) = (𝑁 ∘ 𝑇)) |
24 | | hgt750lemg.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ 𝑅) |
25 | | f1of 6716 |
. . . . . . . . . . . . 13
⊢ (𝑇:(0..^3)–1-1-onto→(0..^3) → 𝑇:(0..^3)⟶(0..^3)) |
26 | 4, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇:(0..^3)⟶(0..^3)) |
27 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^3) ∈
V) |
28 | 26, 27 | fexd 7103 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ V) |
29 | | coexg 7776 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑅 ∧ 𝑇 ∈ V) → (𝑁 ∘ 𝑇) ∈ V) |
30 | 24, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∘ 𝑇) ∈ V) |
31 | 21, 23, 24, 30 | fvmptd 6882 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑁) = (𝑁 ∘ 𝑇)) |
32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → (𝐹‘𝑁) = (𝑁 ∘ 𝑇)) |
33 | 32 | fveq1d 6776 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → ((𝐹‘𝑁)‘𝑏) = ((𝑁 ∘ 𝑇)‘𝑏)) |
34 | | f1ofun 6718 |
. . . . . . . . . 10
⊢ (𝑇:(0..^3)–1-1-onto→(0..^3) → Fun 𝑇) |
35 | 4, 34 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑇) |
36 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → Fun 𝑇) |
37 | | f1odm 6720 |
. . . . . . . . . . 11
⊢ (𝑇:{0, 1, 2}–1-1-onto→{0,
1, 2} → dom 𝑇 = {0, 1,
2}) |
38 | 8, 37 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑇 = {0, 1, 2}) |
39 | 38 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ dom 𝑇 ↔ 𝑏 ∈ {0, 1, 2})) |
40 | 39 | biimpar 478 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → 𝑏 ∈ dom 𝑇) |
41 | | fvco 6866 |
. . . . . . . 8
⊢ ((Fun
𝑇 ∧ 𝑏 ∈ dom 𝑇) → ((𝑁 ∘ 𝑇)‘𝑏) = (𝑁‘(𝑇‘𝑏))) |
42 | 36, 40, 41 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → ((𝑁 ∘ 𝑇)‘𝑏) = (𝑁‘(𝑇‘𝑏))) |
43 | 33, 42 | eqtr2d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → (𝑁‘(𝑇‘𝑏)) = ((𝐹‘𝑁)‘𝑏)) |
44 | 43 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ {0, 1, 2}) → (𝐿‘(𝑁‘(𝑇‘𝑏))) = (𝐿‘((𝐹‘𝑁)‘𝑏))) |
45 | 44 | prodeq2dv 15633 |
. . . 4
⊢ (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘(𝑁‘(𝑇‘𝑏))) = ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹‘𝑁)‘𝑏))) |
46 | 19, 45 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹‘𝑁)‘𝑏)) = ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁‘𝑎))) |
47 | | 2fveq3 6779 |
. . . 4
⊢ (𝑏 = 0 → (𝐿‘((𝐹‘𝑁)‘𝑏)) = (𝐿‘((𝐹‘𝑁)‘0))) |
48 | | 2fveq3 6779 |
. . . 4
⊢ (𝑏 = 1 → (𝐿‘((𝐹‘𝑁)‘𝑏)) = (𝐿‘((𝐹‘𝑁)‘1))) |
49 | | c0ex 10969 |
. . . . 5
⊢ 0 ∈
V |
50 | 49 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
V) |
51 | | 1ex 10971 |
. . . . 5
⊢ 1 ∈
V |
52 | 51 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
V) |
53 | 31 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑁)‘0) = ((𝑁 ∘ 𝑇)‘0)) |
54 | 49 | tpid1 4704 |
. . . . . . . . . 10
⊢ 0 ∈
{0, 1, 2} |
55 | 54, 38 | eleqtrrid 2846 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ dom 𝑇) |
56 | | fvco 6866 |
. . . . . . . . 9
⊢ ((Fun
𝑇 ∧ 0 ∈ dom 𝑇) → ((𝑁 ∘ 𝑇)‘0) = (𝑁‘(𝑇‘0))) |
57 | 35, 55, 56 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 ∘ 𝑇)‘0) = (𝑁‘(𝑇‘0))) |
58 | 53, 57 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑁)‘0) = (𝑁‘(𝑇‘0))) |
59 | 54, 5 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ 0 ∈
(0..^3) |
60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0..^3)) |
61 | 26, 60 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘0) ∈ (0..^3)) |
62 | 12, 61 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝑇‘0)) ∈ ℕ) |
63 | 58, 62 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑁)‘0) ∈ ℕ) |
64 | 10, 63 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘0)) ∈ ℝ) |
65 | 64 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘0)) ∈ ℂ) |
66 | 31 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑁)‘1) = ((𝑁 ∘ 𝑇)‘1)) |
67 | 51 | tpid2 4706 |
. . . . . . . . . 10
⊢ 1 ∈
{0, 1, 2} |
68 | 67, 38 | eleqtrrid 2846 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈ dom 𝑇) |
69 | | fvco 6866 |
. . . . . . . . 9
⊢ ((Fun
𝑇 ∧ 1 ∈ dom 𝑇) → ((𝑁 ∘ 𝑇)‘1) = (𝑁‘(𝑇‘1))) |
70 | 35, 68, 69 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 ∘ 𝑇)‘1) = (𝑁‘(𝑇‘1))) |
71 | 66, 70 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑁)‘1) = (𝑁‘(𝑇‘1))) |
72 | 67, 5 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ 1 ∈
(0..^3) |
73 | 72 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
(0..^3)) |
74 | 26, 73 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘1) ∈ (0..^3)) |
75 | 12, 74 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝑇‘1)) ∈ ℕ) |
76 | 71, 75 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑁)‘1) ∈ ℕ) |
77 | 10, 76 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘1)) ∈ ℝ) |
78 | 77 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘1)) ∈ ℂ) |
79 | | 0ne1 12044 |
. . . . 5
⊢ 0 ≠
1 |
80 | 79 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ≠ 1) |
81 | | 2fveq3 6779 |
. . . 4
⊢ (𝑏 = 2 → (𝐿‘((𝐹‘𝑁)‘𝑏)) = (𝐿‘((𝐹‘𝑁)‘2))) |
82 | | 2ex 12050 |
. . . . 5
⊢ 2 ∈
V |
83 | 82 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
V) |
84 | 31 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑁)‘2) = ((𝑁 ∘ 𝑇)‘2)) |
85 | 82 | tpid3 4709 |
. . . . . . . . . 10
⊢ 2 ∈
{0, 1, 2} |
86 | 85, 38 | eleqtrrid 2846 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈ dom 𝑇) |
87 | | fvco 6866 |
. . . . . . . . 9
⊢ ((Fun
𝑇 ∧ 2 ∈ dom 𝑇) → ((𝑁 ∘ 𝑇)‘2) = (𝑁‘(𝑇‘2))) |
88 | 35, 86, 87 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 ∘ 𝑇)‘2) = (𝑁‘(𝑇‘2))) |
89 | 84, 88 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑁)‘2) = (𝑁‘(𝑇‘2))) |
90 | 85, 5 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ 2 ∈
(0..^3) |
91 | 90 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
(0..^3)) |
92 | 26, 91 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘2) ∈ (0..^3)) |
93 | 12, 92 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝑇‘2)) ∈ ℕ) |
94 | 89, 93 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑁)‘2) ∈ ℕ) |
95 | 10, 94 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘2)) ∈ ℝ) |
96 | 95 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘((𝐹‘𝑁)‘2)) ∈ ℂ) |
97 | | 0ne2 12180 |
. . . . 5
⊢ 0 ≠
2 |
98 | 97 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ≠ 2) |
99 | | 1ne2 12181 |
. . . . 5
⊢ 1 ≠
2 |
100 | 99 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ≠ 2) |
101 | 47, 48, 50, 52, 65, 78, 80, 81, 83, 96, 98, 100 | prodtp 31141 |
. . 3
⊢ (𝜑 → ∏𝑏 ∈ {0, 1, 2} (𝐿‘((𝐹‘𝑁)‘𝑏)) = (((𝐿‘((𝐹‘𝑁)‘0)) · (𝐿‘((𝐹‘𝑁)‘1))) · (𝐿‘((𝐹‘𝑁)‘2)))) |
102 | | 2fveq3 6779 |
. . . 4
⊢ (𝑎 = 0 → (𝐿‘(𝑁‘𝑎)) = (𝐿‘(𝑁‘0))) |
103 | | 2fveq3 6779 |
. . . 4
⊢ (𝑎 = 1 → (𝐿‘(𝑁‘𝑎)) = (𝐿‘(𝑁‘1))) |
104 | 12, 60 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝑁‘0) ∈ ℕ) |
105 | 10, 104 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℝ) |
106 | 105 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘(𝑁‘0)) ∈ ℂ) |
107 | 12, 73 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝑁‘1) ∈ ℕ) |
108 | 10, 107 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℝ) |
109 | 108 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘(𝑁‘1)) ∈ ℂ) |
110 | | 2fveq3 6779 |
. . . 4
⊢ (𝑎 = 2 → (𝐿‘(𝑁‘𝑎)) = (𝐿‘(𝑁‘2))) |
111 | 12, 91 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝑁‘2) ∈ ℕ) |
112 | 10, 111 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℝ) |
113 | 112 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐿‘(𝑁‘2)) ∈ ℂ) |
114 | 102, 103,
50, 52, 106, 109, 80, 110, 83, 113, 98, 100 | prodtp 31141 |
. . 3
⊢ (𝜑 → ∏𝑎 ∈ {0, 1, 2} (𝐿‘(𝑁‘𝑎)) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2)))) |
115 | 46, 101, 114 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (((𝐿‘((𝐹‘𝑁)‘0)) · (𝐿‘((𝐹‘𝑁)‘1))) · (𝐿‘((𝐹‘𝑁)‘2))) = (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2)))) |
116 | 65, 78, 96 | mulassd 10998 |
. 2
⊢ (𝜑 → (((𝐿‘((𝐹‘𝑁)‘0)) · (𝐿‘((𝐹‘𝑁)‘1))) · (𝐿‘((𝐹‘𝑁)‘2))) = ((𝐿‘((𝐹‘𝑁)‘0)) · ((𝐿‘((𝐹‘𝑁)‘1)) · (𝐿‘((𝐹‘𝑁)‘2))))) |
117 | 106, 109,
113 | mulassd 10998 |
. 2
⊢ (𝜑 → (((𝐿‘(𝑁‘0)) · (𝐿‘(𝑁‘1))) · (𝐿‘(𝑁‘2))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2))))) |
118 | 115, 116,
117 | 3eqtr3d 2786 |
1
⊢ (𝜑 → ((𝐿‘((𝐹‘𝑁)‘0)) · ((𝐿‘((𝐹‘𝑁)‘1)) · (𝐿‘((𝐹‘𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2))))) |