![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem1 | Structured version Visualization version GIF version |
Description: Lemma for filnet 36365. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
filnetlem1.a | ⊢ 𝐴 ∈ V |
filnetlem1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
filnetlem1 | ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
2 | 1 | sseq2d 4028 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝑦) ⊆ (1st ‘𝐴))) |
3 | fveq2 6907 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
4 | 3 | sseq1d 4027 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝑦) ⊆ (1st ‘𝐴) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
5 | 2, 4 | sylan9bb 509 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
6 | filnet.d | . 2 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
7 | 5, 6 | brab2a 5782 | 1 ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 ∪ ciun 4996 class class class wbr 5148 {copab 5210 × cxp 5687 ‘cfv 6563 1st c1st 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-iota 6516 df-fv 6571 |
This theorem is referenced by: filnetlem2 36362 filnetlem3 36363 filnetlem4 36364 |
Copyright terms: Public domain | W3C validator |