![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem1 | Structured version Visualization version GIF version |
Description: Lemma for filnet 36348. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
filnetlem1.a | ⊢ 𝐴 ∈ V |
filnetlem1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
filnetlem1 | ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
2 | 1 | sseq2d 4041 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝑦) ⊆ (1st ‘𝐴))) |
3 | fveq2 6920 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
4 | 3 | sseq1d 4040 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝑦) ⊆ (1st ‘𝐴) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
5 | 2, 4 | sylan9bb 509 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
6 | filnet.d | . 2 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
7 | 5, 6 | brab2a 5793 | 1 ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 ∪ ciun 5015 class class class wbr 5166 {copab 5228 × cxp 5698 ‘cfv 6573 1st c1st 8028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-iota 6525 df-fv 6581 |
This theorem is referenced by: filnetlem2 36345 filnetlem3 36346 filnetlem4 36347 |
Copyright terms: Public domain | W3C validator |