Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem1 Structured version   Visualization version   GIF version

Theorem filnetlem1 33337
Description: Lemma for filnet 33341. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
filnetlem1.a 𝐴 ∈ V
filnetlem1.b 𝐵 ∈ V
Assertion
Ref Expression
filnetlem1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)

Proof of Theorem filnetlem1
StepHypRef Expression
1 fveq2 6545 . . . 4 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21sseq2d 3926 . . 3 (𝑥 = 𝐴 → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝑦) ⊆ (1st𝐴)))
3 fveq2 6545 . . . 4 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
43sseq1d 3925 . . 3 (𝑦 = 𝐵 → ((1st𝑦) ⊆ (1st𝐴) ↔ (1st𝐵) ⊆ (1st𝐴)))
52, 4sylan9bb 510 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝐵) ⊆ (1st𝐴)))
6 filnet.d . 2 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
75, 6brab2a 5537 1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1525  wcel 2083  Vcvv 3440  wss 3865  {csn 4478   ciun 4831   class class class wbr 4968  {copab 5030   × cxp 5448  cfv 6232  1st c1st 7550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-xp 5456  df-iota 6196  df-fv 6240
This theorem is referenced by:  filnetlem2  33338  filnetlem3  33339  filnetlem4  33340
  Copyright terms: Public domain W3C validator