Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem1 | Structured version Visualization version GIF version |
Description: Lemma for filnet 34308. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
filnetlem1.a | ⊢ 𝐴 ∈ V |
filnetlem1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
filnetlem1 | ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6717 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
2 | 1 | sseq2d 3933 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝑦) ⊆ (1st ‘𝐴))) |
3 | fveq2 6717 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
4 | 3 | sseq1d 3932 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝑦) ⊆ (1st ‘𝐴) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
5 | 2, 4 | sylan9bb 513 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((1st ‘𝑦) ⊆ (1st ‘𝑥) ↔ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
6 | filnet.d | . 2 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
7 | 5, 6 | brab2a 5641 | 1 ⊢ (𝐴𝐷𝐵 ↔ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (1st ‘𝐵) ⊆ (1st ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 {csn 4541 ∪ ciun 4904 class class class wbr 5053 {copab 5115 × cxp 5549 ‘cfv 6380 1st c1st 7759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-iota 6338 df-fv 6388 |
This theorem is referenced by: filnetlem2 34305 filnetlem3 34306 filnetlem4 34307 |
Copyright terms: Public domain | W3C validator |