Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem1 Structured version   Visualization version   GIF version

Theorem filnetlem1 35566
Description: Lemma for filnet 35570. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
filnetlem1.a 𝐴 ∈ V
filnetlem1.b 𝐵 ∈ V
Assertion
Ref Expression
filnetlem1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)

Proof of Theorem filnetlem1
StepHypRef Expression
1 fveq2 6890 . . . 4 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21sseq2d 4013 . . 3 (𝑥 = 𝐴 → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝑦) ⊆ (1st𝐴)))
3 fveq2 6890 . . . 4 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
43sseq1d 4012 . . 3 (𝑦 = 𝐵 → ((1st𝑦) ⊆ (1st𝐴) ↔ (1st𝐵) ⊆ (1st𝐴)))
52, 4sylan9bb 508 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝐵) ⊆ (1st𝐴)))
6 filnet.d . 2 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
75, 6brab2a 5768 1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  wss 3947  {csn 4627   ciun 4996   class class class wbr 5147  {copab 5209   × cxp 5673  cfv 6542  1st c1st 7975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-iota 6494  df-fv 6550
This theorem is referenced by:  filnetlem2  35567  filnetlem3  35568  filnetlem4  35569
  Copyright terms: Public domain W3C validator