Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem1 Structured version   Visualization version   GIF version

Theorem filnetlem1 36344
Description: Lemma for filnet 36348. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
filnetlem1.a 𝐴 ∈ V
filnetlem1.b 𝐵 ∈ V
Assertion
Ref Expression
filnetlem1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)

Proof of Theorem filnetlem1
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21sseq2d 4041 . . 3 (𝑥 = 𝐴 → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝑦) ⊆ (1st𝐴)))
3 fveq2 6920 . . . 4 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
43sseq1d 4040 . . 3 (𝑦 = 𝐵 → ((1st𝑦) ⊆ (1st𝐴) ↔ (1st𝐵) ⊆ (1st𝐴)))
52, 4sylan9bb 509 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝐵) ⊆ (1st𝐴)))
6 filnet.d . 2 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
75, 6brab2a 5793 1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   ciun 5015   class class class wbr 5166  {copab 5228   × cxp 5698  cfv 6573  1st c1st 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-iota 6525  df-fv 6581
This theorem is referenced by:  filnetlem2  36345  filnetlem3  36346  filnetlem4  36347
  Copyright terms: Public domain W3C validator