Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem1 Structured version   Visualization version   GIF version

Theorem filnetlem1 34494
Description: Lemma for filnet 34498. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
filnetlem1.a 𝐴 ∈ V
filnetlem1.b 𝐵 ∈ V
Assertion
Ref Expression
filnetlem1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)

Proof of Theorem filnetlem1
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21sseq2d 3949 . . 3 (𝑥 = 𝐴 → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝑦) ⊆ (1st𝐴)))
3 fveq2 6756 . . . 4 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
43sseq1d 3948 . . 3 (𝑦 = 𝐵 → ((1st𝑦) ⊆ (1st𝐴) ↔ (1st𝐵) ⊆ (1st𝐴)))
52, 4sylan9bb 509 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ((1st𝑦) ⊆ (1st𝑥) ↔ (1st𝐵) ⊆ (1st𝐴)))
6 filnet.d . 2 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
75, 6brab2a 5670 1 (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558   ciun 4921   class class class wbr 5070  {copab 5132   × cxp 5578  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-iota 6376  df-fv 6426
This theorem is referenced by:  filnetlem2  34495  filnetlem3  34496  filnetlem4  34497
  Copyright terms: Public domain W3C validator