| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for filnet 36426. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
| filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
| Ref | Expression |
|---|---|
| filnetlem2 | ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idref 7079 | . . 3 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧 ∈ 𝐻 𝑧𝐷𝑧) | |
| 2 | ssid 3952 | . . . . . 6 ⊢ (1st ‘𝑧) ⊆ (1st ‘𝑧) | |
| 3 | filnet.h | . . . . . . 7 ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
| 4 | filnet.d | . . . . . . 7 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
| 5 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 4, 5, 5 | filnetlem1 36422 | . . . . . 6 ⊢ (𝑧𝐷𝑧 ↔ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st ‘𝑧))) |
| 7 | 2, 6 | mpbiran2 710 | . . . . 5 ⊢ (𝑧𝐷𝑧 ↔ (𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
| 8 | 7 | biimpri 228 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → 𝑧𝐷𝑧) |
| 9 | 8 | anidms 566 | . . 3 ⊢ (𝑧 ∈ 𝐻 → 𝑧𝐷𝑧) |
| 10 | 1, 9 | mprgbir 3054 | . 2 ⊢ ( I ↾ 𝐻) ⊆ 𝐷 |
| 11 | opabssxp 5706 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} ⊆ (𝐻 × 𝐻) | |
| 12 | 4, 11 | eqsstri 3976 | . 2 ⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4573 ∪ ciun 4939 class class class wbr 5089 {copab 5151 I cid 5508 × cxp 5612 ↾ cres 5616 ‘cfv 6481 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: filnetlem3 36424 filnetlem4 36425 |
| Copyright terms: Public domain | W3C validator |