![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem2 | Structured version Visualization version GIF version |
Description: Lemma for filnet 35922. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
filnet.d | ⊢ 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
Ref | Expression |
---|---|
filnetlem2 | ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idref 7150 | . . 3 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧 ∈ 𝐻 𝑧𝐷𝑧) | |
2 | ssid 3995 | . . . . . 6 ⊢ (1st ‘𝑧) ⊆ (1st ‘𝑧) | |
3 | filnet.h | . . . . . . 7 ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
4 | filnet.d | . . . . . . 7 ⊢ 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
5 | vex 3467 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 4, 5, 5 | filnetlem1 35918 | . . . . . 6 ⊢ (𝑧𝐷𝑧 ↔ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st ‘𝑧))) |
7 | 2, 6 | mpbiran2 708 | . . . . 5 ⊢ (𝑧𝐷𝑧 ↔ (𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
8 | 7 | biimpri 227 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → 𝑧𝐷𝑧) |
9 | 8 | anidms 565 | . . 3 ⊢ (𝑧 ∈ 𝐻 → 𝑧𝐷𝑧) |
10 | 1, 9 | mprgbir 3058 | . 2 ⊢ ( I ↾ 𝐻) ⊆ 𝐷 |
11 | opabssxp 5764 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} ⊆ (𝐻 × 𝐻) | |
12 | 4, 11 | eqsstri 4007 | . 2 ⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
13 | 10, 12 | pm3.2i 469 | 1 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 {csn 4624 ∪ ciun 4991 class class class wbr 5143 {copab 5205 I cid 5569 × cxp 5670 ↾ cres 5674 ‘cfv 6542 1st c1st 7987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: filnetlem3 35920 filnetlem4 35921 |
Copyright terms: Public domain | W3C validator |