| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for filnet 36366. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
| filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
| Ref | Expression |
|---|---|
| filnetlem2 | ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idref 7080 | . . 3 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧 ∈ 𝐻 𝑧𝐷𝑧) | |
| 2 | ssid 3958 | . . . . . 6 ⊢ (1st ‘𝑧) ⊆ (1st ‘𝑧) | |
| 3 | filnet.h | . . . . . . 7 ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
| 4 | filnet.d | . . . . . . 7 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
| 5 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 4, 5, 5 | filnetlem1 36362 | . . . . . 6 ⊢ (𝑧𝐷𝑧 ↔ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st ‘𝑧))) |
| 7 | 2, 6 | mpbiran2 710 | . . . . 5 ⊢ (𝑧𝐷𝑧 ↔ (𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
| 8 | 7 | biimpri 228 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → 𝑧𝐷𝑧) |
| 9 | 8 | anidms 566 | . . 3 ⊢ (𝑧 ∈ 𝐻 → 𝑧𝐷𝑧) |
| 10 | 1, 9 | mprgbir 3051 | . 2 ⊢ ( I ↾ 𝐻) ⊆ 𝐷 |
| 11 | opabssxp 5711 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} ⊆ (𝐻 × 𝐻) | |
| 12 | 4, 11 | eqsstri 3982 | . 2 ⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 {csn 4577 ∪ ciun 4941 class class class wbr 5092 {copab 5154 I cid 5513 × cxp 5617 ↾ cres 5621 ‘cfv 6482 1st c1st 7922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: filnetlem3 36364 filnetlem4 36365 |
| Copyright terms: Public domain | W3C validator |