Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem2 | Structured version Visualization version GIF version |
Description: Lemma for filnet 34120. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
Ref | Expression |
---|---|
filnetlem2 | ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idref 6899 | . . 3 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧 ∈ 𝐻 𝑧𝐷𝑧) | |
2 | ssid 3914 | . . . . . 6 ⊢ (1st ‘𝑧) ⊆ (1st ‘𝑧) | |
3 | filnet.h | . . . . . . 7 ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
4 | filnet.d | . . . . . . 7 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
5 | vex 3413 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 4, 5, 5 | filnetlem1 34116 | . . . . . 6 ⊢ (𝑧𝐷𝑧 ↔ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st ‘𝑧))) |
7 | 2, 6 | mpbiran2 709 | . . . . 5 ⊢ (𝑧𝐷𝑧 ↔ (𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
8 | 7 | biimpri 231 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → 𝑧𝐷𝑧) |
9 | 8 | anidms 570 | . . 3 ⊢ (𝑧 ∈ 𝐻 → 𝑧𝐷𝑧) |
10 | 1, 9 | mprgbir 3085 | . 2 ⊢ ( I ↾ 𝐻) ⊆ 𝐷 |
11 | opabssxp 5612 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} ⊆ (𝐻 × 𝐻) | |
12 | 4, 11 | eqsstri 3926 | . 2 ⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
13 | 10, 12 | pm3.2i 474 | 1 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 {csn 4522 ∪ ciun 4883 class class class wbr 5032 {copab 5094 I cid 5429 × cxp 5522 ↾ cres 5526 ‘cfv 6335 1st c1st 7691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 |
This theorem is referenced by: filnetlem3 34118 filnetlem4 34119 |
Copyright terms: Public domain | W3C validator |