| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > filnetlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for filnet 36377. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| filnet.h | ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
| filnet.d | ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} |
| Ref | Expression |
|---|---|
| filnetlem2 | ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idref 7121 | . . 3 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧 ∈ 𝐻 𝑧𝐷𝑧) | |
| 2 | ssid 3972 | . . . . . 6 ⊢ (1st ‘𝑧) ⊆ (1st ‘𝑧) | |
| 3 | filnet.h | . . . . . . 7 ⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
| 4 | filnet.d | . . . . . . 7 ⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
| 5 | vex 3454 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 4, 5, 5 | filnetlem1 36373 | . . . . . 6 ⊢ (𝑧𝐷𝑧 ↔ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st ‘𝑧))) |
| 7 | 2, 6 | mpbiran2 710 | . . . . 5 ⊢ (𝑧𝐷𝑧 ↔ (𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
| 8 | 7 | biimpri 228 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → 𝑧𝐷𝑧) |
| 9 | 8 | anidms 566 | . . 3 ⊢ (𝑧 ∈ 𝐻 → 𝑧𝐷𝑧) |
| 10 | 1, 9 | mprgbir 3052 | . 2 ⊢ ( I ↾ 𝐻) ⊆ 𝐷 |
| 11 | opabssxp 5734 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} ⊆ (𝐻 × 𝐻) | |
| 12 | 4, 11 | eqsstri 3996 | . 2 ⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ (( I ↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ∪ ciun 4958 class class class wbr 5110 {copab 5172 I cid 5535 × cxp 5639 ↾ cres 5643 ‘cfv 6514 1st c1st 7969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: filnetlem3 36375 filnetlem4 36376 |
| Copyright terms: Public domain | W3C validator |