Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem2 Structured version   Visualization version   GIF version

Theorem filnetlem2 36360
Description: Lemma for filnet 36363. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem2 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)

Proof of Theorem filnetlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idref 7100 . . 3 (( I ↾ 𝐻) ⊆ 𝐷 ↔ ∀𝑧𝐻 𝑧𝐷𝑧)
2 ssid 3966 . . . . . 6 (1st𝑧) ⊆ (1st𝑧)
3 filnet.h . . . . . . 7 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
4 filnet.d . . . . . . 7 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
5 vex 3448 . . . . . . 7 𝑧 ∈ V
63, 4, 5, 5filnetlem1 36359 . . . . . 6 (𝑧𝐷𝑧 ↔ ((𝑧𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑧)))
72, 6mpbiran2 710 . . . . 5 (𝑧𝐷𝑧 ↔ (𝑧𝐻𝑧𝐻))
87biimpri 228 . . . 4 ((𝑧𝐻𝑧𝐻) → 𝑧𝐷𝑧)
98anidms 566 . . 3 (𝑧𝐻𝑧𝐷𝑧)
101, 9mprgbir 3051 . 2 ( I ↾ 𝐻) ⊆ 𝐷
11 opabssxp 5723 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))} ⊆ (𝐻 × 𝐻)
124, 11eqsstri 3990 . 2 𝐷 ⊆ (𝐻 × 𝐻)
1310, 12pm3.2i 470 1 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wss 3911  {csn 4585   ciun 4951   class class class wbr 5102  {copab 5164   I cid 5525   × cxp 5629  cres 5633  cfv 6499  1st c1st 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  filnetlem3  36361  filnetlem4  36362
  Copyright terms: Public domain W3C validator