Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnet Structured version   Visualization version   GIF version

Theorem filnet 36365
Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Assertion
Ref Expression
filnet (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Distinct variable groups:   𝑓,𝑑,𝐹   𝑋,𝑑,𝑓

Proof of Theorem filnet
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 𝑛𝐹 ({𝑛} × 𝑛) = 𝑛𝐹 ({𝑛} × 𝑛)
2 eqid 2735 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))}
31, 2filnetlem4 36364 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wrex 3068  wss 3963  {csn 4631   ciun 4996  {copab 5210   × cxp 5687  dom cdm 5689  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  DirRelcdir 18652  tailctail 18653  Filcfil 23869   FilMap cfm 23957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-dir 18654  df-tail 18655  df-fbas 21379  df-fg 21380  df-fil 23870  df-fm 23962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator