Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnet Structured version   Visualization version   GIF version

Theorem filnet 36343
Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Assertion
Ref Expression
filnet (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Distinct variable groups:   𝑓,𝑑,𝐹   𝑋,𝑑,𝑓

Proof of Theorem filnet
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 𝑛𝐹 ({𝑛} × 𝑛) = 𝑛𝐹 ({𝑛} × 𝑛)
2 eqid 2729 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))}
31, 2filnetlem4 36342 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3911  {csn 4585   ciun 4951  {copab 5164   × cxp 5629  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  DirRelcdir 18529  tailctail 18530  Filcfil 23708   FilMap cfm 23796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-dir 18531  df-tail 18532  df-fbas 21237  df-fg 21238  df-fil 23709  df-fm 23801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator