| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > filnet | Structured version Visualization version GIF version | ||
| Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| filnet | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
| 2 | eqid 2736 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
| 3 | 1, 2 | filnetlem4 36404 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 {csn 4606 ∪ ciun 4972 {copab 5186 × cxp 5657 dom cdm 5659 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 DirRelcdir 18609 tailctail 18610 Filcfil 23788 FilMap cfm 23876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-dir 18611 df-tail 18612 df-fbas 21317 df-fg 21318 df-fil 23789 df-fm 23881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |