| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > filnet | Structured version Visualization version GIF version | ||
| Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| filnet | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
| 2 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
| 3 | 1, 2 | filnetlem4 36342 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 {csn 4585 ∪ ciun 4951 {copab 5164 × cxp 5629 dom cdm 5631 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 DirRelcdir 18529 tailctail 18530 Filcfil 23708 FilMap cfm 23796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-dir 18531 df-tail 18532 df-fbas 21237 df-fg 21238 df-fil 23709 df-fm 23801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |