![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnet | Structured version Visualization version GIF version |
Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.) |
Ref | Expression |
---|---|
filnet | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) | |
2 | eqid 2740 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ∧ 𝑦 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) ∧ (1st ‘𝑦) ⊆ (1st ‘𝑥))} | |
3 | 1, 2 | filnetlem4 36347 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 {csn 4648 ∪ ciun 5015 {copab 5228 × cxp 5698 dom cdm 5700 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 DirRelcdir 18664 tailctail 18665 Filcfil 23874 FilMap cfm 23962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-dir 18666 df-tail 18667 df-fbas 21384 df-fg 21385 df-fil 23875 df-fm 23967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |