Step | Hyp | Ref
| Expression |
1 | | tailfb.1 |
. . . . 5
⊢ 𝑋 = dom 𝐷 |
2 | 1 | tailf 34564 |
. . . 4
⊢ (𝐷 ∈ DirRel →
(tail‘𝐷):𝑋⟶𝒫 𝑋) |
3 | 2 | frnd 6608 |
. . 3
⊢ (𝐷 ∈ DirRel → ran
(tail‘𝐷) ⊆
𝒫 𝑋) |
4 | 3 | adantr 481 |
. 2
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran
(tail‘𝐷) ⊆
𝒫 𝑋) |
5 | | n0 4280 |
. . . . 5
⊢ (𝑋 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑋) |
6 | | ffn 6600 |
. . . . . . . 8
⊢
((tail‘𝐷):𝑋⟶𝒫 𝑋 → (tail‘𝐷) Fn 𝑋) |
7 | | fnfvelrn 6958 |
. . . . . . . . 9
⊢
(((tail‘𝐷) Fn
𝑋 ∧ 𝑥 ∈ 𝑋) → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)) |
8 | 7 | ex 413 |
. . . . . . . 8
⊢
((tail‘𝐷) Fn
𝑋 → (𝑥 ∈ 𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷))) |
9 | 2, 6, 8 | 3syl 18 |
. . . . . . 7
⊢ (𝐷 ∈ DirRel → (𝑥 ∈ 𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷))) |
10 | | ne0i 4268 |
. . . . . . 7
⊢
(((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷) → ran (tail‘𝐷) ≠ ∅) |
11 | 9, 10 | syl6 35 |
. . . . . 6
⊢ (𝐷 ∈ DirRel → (𝑥 ∈ 𝑋 → ran (tail‘𝐷) ≠ ∅)) |
12 | 11 | exlimdv 1936 |
. . . . 5
⊢ (𝐷 ∈ DirRel →
(∃𝑥 𝑥 ∈ 𝑋 → ran (tail‘𝐷) ≠ ∅)) |
13 | 5, 12 | syl5bi 241 |
. . . 4
⊢ (𝐷 ∈ DirRel → (𝑋 ≠ ∅ → ran
(tail‘𝐷) ≠
∅)) |
14 | 13 | imp 407 |
. . 3
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran
(tail‘𝐷) ≠
∅) |
15 | 1 | tailini 34565 |
. . . . . . . 8
⊢ ((𝐷 ∈ DirRel ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ((tail‘𝐷)‘𝑥)) |
16 | | n0i 4267 |
. . . . . . . 8
⊢ (𝑥 ∈ ((tail‘𝐷)‘𝑥) → ¬ ((tail‘𝐷)‘𝑥) = ∅) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ DirRel ∧ 𝑥 ∈ 𝑋) → ¬ ((tail‘𝐷)‘𝑥) = ∅) |
18 | 17 | nrexdv 3198 |
. . . . . 6
⊢ (𝐷 ∈ DirRel → ¬
∃𝑥 ∈ 𝑋 ((tail‘𝐷)‘𝑥) = ∅) |
19 | 18 | adantr 481 |
. . . . 5
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬
∃𝑥 ∈ 𝑋 ((tail‘𝐷)‘𝑥) = ∅) |
20 | | fvelrnb 6830 |
. . . . . . 7
⊢
((tail‘𝐷) Fn
𝑋 → (∅ ∈
ran (tail‘𝐷) ↔
∃𝑥 ∈ 𝑋 ((tail‘𝐷)‘𝑥) = ∅)) |
21 | 2, 6, 20 | 3syl 18 |
. . . . . 6
⊢ (𝐷 ∈ DirRel → (∅
∈ ran (tail‘𝐷)
↔ ∃𝑥 ∈
𝑋 ((tail‘𝐷)‘𝑥) = ∅)) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (∅
∈ ran (tail‘𝐷)
↔ ∃𝑥 ∈
𝑋 ((tail‘𝐷)‘𝑥) = ∅)) |
23 | 19, 22 | mtbird 325 |
. . . 4
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬
∅ ∈ ran (tail‘𝐷)) |
24 | | df-nel 3050 |
. . . 4
⊢ (∅
∉ ran (tail‘𝐷)
↔ ¬ ∅ ∈ ran (tail‘𝐷)) |
25 | 23, 24 | sylibr 233 |
. . 3
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∅
∉ ran (tail‘𝐷)) |
26 | | fvelrnb 6830 |
. . . . . . . 8
⊢
((tail‘𝐷) Fn
𝑋 → (𝑥 ∈ ran (tail‘𝐷) ↔ ∃𝑢 ∈ 𝑋 ((tail‘𝐷)‘𝑢) = 𝑥)) |
27 | | fvelrnb 6830 |
. . . . . . . 8
⊢
((tail‘𝐷) Fn
𝑋 → (𝑦 ∈ ran (tail‘𝐷) ↔ ∃𝑣 ∈ 𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)) |
28 | 26, 27 | anbi12d 631 |
. . . . . . 7
⊢
((tail‘𝐷) Fn
𝑋 → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢 ∈ 𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣 ∈ 𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))) |
29 | 2, 6, 28 | 3syl 18 |
. . . . . 6
⊢ (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢 ∈ 𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣 ∈ 𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))) |
30 | | reeanv 3294 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝑋 ∃𝑣 ∈ 𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) ↔ (∃𝑢 ∈ 𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣 ∈ 𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)) |
31 | 1 | dirge 18321 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → ∃𝑤 ∈ 𝑋 (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤)) |
32 | 31 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ∃𝑤 ∈ 𝑋 (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤)) |
33 | 2, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ DirRel →
(tail‘𝐷) Fn 𝑋) |
34 | | fnfvelrn 6958 |
. . . . . . . . . . . . 13
⊢
(((tail‘𝐷) Fn
𝑋 ∧ 𝑤 ∈ 𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷)) |
35 | 33, 34 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷)) |
36 | 35 | ad2ant2r 744 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷)) |
37 | | dirtr 18320 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑢𝐷𝑤 ∧ 𝑤𝐷𝑥)) → 𝑢𝐷𝑥) |
38 | 37 | exp32 421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑢𝐷𝑤 → (𝑤𝐷𝑥 → 𝑢𝐷𝑥))) |
39 | 38 | elvd 3439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ DirRel → (𝑢𝐷𝑤 → (𝑤𝐷𝑥 → 𝑢𝐷𝑥))) |
40 | 39 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑢𝐷𝑤 → 𝑢𝐷𝑥))) |
41 | 40 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑢𝐷𝑤 → 𝑢𝐷𝑥)) |
42 | 41 | ad2ant2rl 746 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑤𝐷𝑥)) → (𝑢𝐷𝑤 → 𝑢𝐷𝑥)) |
43 | | dirtr 18320 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑣𝐷𝑤 ∧ 𝑤𝐷𝑥)) → 𝑣𝐷𝑥) |
44 | 43 | exp32 421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑣𝐷𝑤 → (𝑤𝐷𝑥 → 𝑣𝐷𝑥))) |
45 | 44 | elvd 3439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ DirRel → (𝑣𝐷𝑤 → (𝑤𝐷𝑥 → 𝑣𝐷𝑥))) |
46 | 45 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑣𝐷𝑤 → 𝑣𝐷𝑥))) |
47 | 46 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑣𝐷𝑤 → 𝑣𝐷𝑥)) |
48 | 47 | ad2ant2rl 746 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑤𝐷𝑥)) → (𝑣𝐷𝑤 → 𝑣𝐷𝑥)) |
49 | 42, 48 | anim12d 609 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑤𝐷𝑥)) → ((𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤) → (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥))) |
50 | 49 | expr 457 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ 𝑤 ∈ 𝑋) → (𝑤𝐷𝑥 → ((𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤) → (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥)))) |
51 | 50 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ 𝑤 ∈ 𝑋) → ((𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥)))) |
52 | 51 | impr 455 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥))) |
53 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
54 | 1 | eltail 34563 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥)) |
55 | 53, 54 | mp3an3 1449 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥)) |
56 | 55 | ad2ant2r 744 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥)) |
57 | 1 | eltail 34563 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥)) |
58 | 53, 57 | mp3an3 1449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥)) |
59 | 58 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥)) |
60 | 1 | eltail 34563 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ DirRel ∧ 𝑣 ∈ 𝑋 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥)) |
61 | 53, 60 | mp3an3 1449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ DirRel ∧ 𝑣 ∈ 𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥)) |
62 | 61 | adantrl 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥)) |
63 | 59, 62 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥))) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥 ∧ 𝑣𝐷𝑥))) |
65 | 52, 56, 64 | 3imtr4d 294 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)))) |
66 | | elin 3903 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣))) |
67 | 65, 66 | syl6ibr 251 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → 𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))) |
68 | 67 | ssrdv 3927 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) |
69 | | sseq1 3946 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((tail‘𝐷)‘𝑤) → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))) |
70 | 69 | rspcev 3561 |
. . . . . . . . . . 11
⊢
((((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷) ∧ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) |
71 | 36, 68, 70 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) ∧ (𝑤 ∈ 𝑋 ∧ (𝑢𝐷𝑤 ∧ 𝑣𝐷𝑤))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) |
72 | 32, 71 | rexlimddv 3220 |
. . . . . . . . 9
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) |
73 | | ineq1 4139 |
. . . . . . . . . . . 12
⊢
(((tail‘𝐷)‘𝑢) = 𝑥 → (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) = (𝑥 ∩ ((tail‘𝐷)‘𝑣))) |
74 | 73 | sseq2d 3953 |
. . . . . . . . . . 11
⊢
(((tail‘𝐷)‘𝑢) = 𝑥 → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)))) |
75 | 74 | rexbidv 3226 |
. . . . . . . . . 10
⊢
(((tail‘𝐷)‘𝑢) = 𝑥 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)))) |
76 | | ineq2 4140 |
. . . . . . . . . . . 12
⊢
(((tail‘𝐷)‘𝑣) = 𝑦 → (𝑥 ∩ ((tail‘𝐷)‘𝑣)) = (𝑥 ∩ 𝑦)) |
77 | 76 | sseq2d 3953 |
. . . . . . . . . . 11
⊢
(((tail‘𝐷)‘𝑣) = 𝑦 → (𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
78 | 77 | rexbidv 3226 |
. . . . . . . . . 10
⊢
(((tail‘𝐷)‘𝑣) = 𝑦 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
79 | 75, 78 | sylan9bb 510 |
. . . . . . . . 9
⊢
((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
80 | 72, 79 | syl5ibcom 244 |
. . . . . . . 8
⊢ ((𝐷 ∈ DirRel ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
81 | 80 | rexlimdvva 3223 |
. . . . . . 7
⊢ (𝐷 ∈ DirRel →
(∃𝑢 ∈ 𝑋 ∃𝑣 ∈ 𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
82 | 30, 81 | syl5bir 242 |
. . . . . 6
⊢ (𝐷 ∈ DirRel →
((∃𝑢 ∈ 𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣 ∈ 𝑋 ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
83 | 29, 82 | sylbid 239 |
. . . . 5
⊢ (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
84 | 83 | adantr 481 |
. . . 4
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
85 | 84 | ralrimivv 3122 |
. . 3
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) →
∀𝑥 ∈ ran
(tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
86 | 14, 25, 85 | 3jca 1127 |
. 2
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran
(tail‘𝐷) ≠ ∅
∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
87 | | dmexg 7750 |
. . . . 5
⊢ (𝐷 ∈ DirRel → dom 𝐷 ∈ V) |
88 | 1, 87 | eqeltrid 2843 |
. . . 4
⊢ (𝐷 ∈ DirRel → 𝑋 ∈ V) |
89 | 88 | adantr 481 |
. . 3
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V) |
90 | | isfbas2 22986 |
. . 3
⊢ (𝑋 ∈ V → (ran
(tail‘𝐷) ∈
(fBas‘𝑋) ↔ (ran
(tail‘𝐷) ⊆
𝒫 𝑋 ∧ (ran
(tail‘𝐷) ≠ ∅
∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
91 | 89, 90 | syl 17 |
. 2
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran
(tail‘𝐷) ∈
(fBas‘𝑋) ↔ (ran
(tail‘𝐷) ⊆
𝒫 𝑋 ∧ (ran
(tail‘𝐷) ≠ ∅
∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
92 | 4, 86, 91 | mpbir2and 710 |
1
⊢ ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran
(tail‘𝐷) ∈
(fBas‘𝑋)) |