Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Structured version   Visualization version   GIF version

Theorem tailfb 36365
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfb ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))

Proof of Theorem tailfb
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5 𝑋 = dom 𝐷
21tailf 36363 . . . 4 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
32frnd 6696 . . 3 (𝐷 ∈ DirRel → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
43adantr 480 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
5 n0 4316 . . . . 5 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
6 ffn 6688 . . . . . . . 8 ((tail‘𝐷):𝑋⟶𝒫 𝑋 → (tail‘𝐷) Fn 𝑋)
7 fnfvelrn 7052 . . . . . . . . 9 (((tail‘𝐷) Fn 𝑋𝑥𝑋) → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷))
87ex 412 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
92, 6, 83syl 18 . . . . . . 7 (𝐷 ∈ DirRel → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
10 ne0i 4304 . . . . . . 7 (((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷) → ran (tail‘𝐷) ≠ ∅)
119, 10syl6 35 . . . . . 6 (𝐷 ∈ DirRel → (𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
1211exlimdv 1933 . . . . 5 (𝐷 ∈ DirRel → (∃𝑥 𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
135, 12biimtrid 242 . . . 4 (𝐷 ∈ DirRel → (𝑋 ≠ ∅ → ran (tail‘𝐷) ≠ ∅))
1413imp 406 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ≠ ∅)
151tailini 36364 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → 𝑥 ∈ ((tail‘𝐷)‘𝑥))
16 n0i 4303 . . . . . . . 8 (𝑥 ∈ ((tail‘𝐷)‘𝑥) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1715, 16syl 17 . . . . . . 7 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1817nrexdv 3128 . . . . . 6 (𝐷 ∈ DirRel → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
1918adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
20 fvelrnb 6921 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
212, 6, 203syl 18 . . . . . 6 (𝐷 ∈ DirRel → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2221adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2319, 22mtbird 325 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∅ ∈ ran (tail‘𝐷))
24 df-nel 3030 . . . 4 (∅ ∉ ran (tail‘𝐷) ↔ ¬ ∅ ∈ ran (tail‘𝐷))
2523, 24sylibr 234 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∅ ∉ ran (tail‘𝐷))
26 fvelrnb 6921 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥 ∈ ran (tail‘𝐷) ↔ ∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥))
27 fvelrnb 6921 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑦 ∈ ran (tail‘𝐷) ↔ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
2826, 27anbi12d 632 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
292, 6, 283syl 18 . . . . . 6 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
30 reeanv 3209 . . . . . . 7 (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
311dirge 18562 . . . . . . . . . . 11 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑣𝑋) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
32313expb 1120 . . . . . . . . . 10 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
332, 6syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ DirRel → (tail‘𝐷) Fn 𝑋)
34 fnfvelrn 7052 . . . . . . . . . . . . 13 (((tail‘𝐷) Fn 𝑋𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3533, 34sylan 580 . . . . . . . . . . . 12 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3635ad2ant2r 747 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
37 dirtr 18561 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑢𝐷𝑤𝑤𝐷𝑥)) → 𝑢𝐷𝑥)
3837exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
3938elvd 3453 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑢𝐷𝑤𝑢𝐷𝑥)))
4140imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑢𝐷𝑤𝑢𝐷𝑥))
4241ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑢𝐷𝑤𝑢𝐷𝑥))
43 dirtr 18561 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑣𝐷𝑤𝑤𝐷𝑥)) → 𝑣𝐷𝑥)
4443exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4544elvd 3453 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4645com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑣𝐷𝑤𝑣𝐷𝑥)))
4746imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4847ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4942, 48anim12d 609 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥)))
5049expr 456 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → (𝑤𝐷𝑥 → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5150com23 86 . . . . . . . . . . . . . . 15 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5251impr 454 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥)))
53 vex 3451 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
541eltail 36362 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ 𝑤𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5553, 54mp3an3 1452 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5655ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
571eltail 36362 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5853, 57mp3an3 1452 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑢𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5958adantrr 717 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
601eltail 36362 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑣𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6153, 60mp3an3 1452 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑣𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6261adantrl 716 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6359, 62anbi12d 632 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6463adantr 480 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6552, 56, 643imtr4d 294 . . . . . . . . . . . . 13 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣))))
66 elin 3930 . . . . . . . . . . . . 13 (𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)))
6765, 66imbitrrdi 252 . . . . . . . . . . . 12 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → 𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
6867ssrdv 3952 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
69 sseq1 3972 . . . . . . . . . . . 12 (𝑧 = ((tail‘𝐷)‘𝑤) → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
7069rspcev 3588 . . . . . . . . . . 11 ((((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷) ∧ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7136, 68, 70syl2anc 584 . . . . . . . . . 10 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7232, 71rexlimddv 3140 . . . . . . . . 9 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
73 ineq1 4176 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑢) = 𝑥 → (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) = (𝑥 ∩ ((tail‘𝐷)‘𝑣)))
7473sseq2d 3979 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑢) = 𝑥 → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
7574rexbidv 3157 . . . . . . . . . 10 (((tail‘𝐷)‘𝑢) = 𝑥 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
76 ineq2 4177 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑥 ∩ ((tail‘𝐷)‘𝑣)) = (𝑥𝑦))
7776sseq2d 3979 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥𝑦)))
7877rexbidv 3157 . . . . . . . . . 10 (((tail‘𝐷)‘𝑣) = 𝑦 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
7975, 78sylan9bb 509 . . . . . . . . 9 ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8072, 79syl5ibcom 245 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8180rexlimdvva 3194 . . . . . . 7 (𝐷 ∈ DirRel → (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8230, 81biimtrrid 243 . . . . . 6 (𝐷 ∈ DirRel → ((∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8329, 82sylbid 240 . . . . 5 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8483adantr 480 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8584ralrimivv 3178 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦))
8614, 25, 853jca 1128 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
87 dmexg 7877 . . . . 5 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
881, 87eqeltrid 2832 . . . 4 (𝐷 ∈ DirRel → 𝑋 ∈ V)
8988adantr 480 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V)
90 isfbas2 23722 . . 3 (𝑋 ∈ V → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
9189, 90syl 17 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
924, 86, 91mpbir2and 713 1 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  DirRelcdir 18553  tailctail 18554  fBascfbas 21252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dir 18555  df-tail 18556  df-fbas 21261
This theorem is referenced by:  filnetlem4  36369
  Copyright terms: Public domain W3C validator