Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Structured version   Visualization version   GIF version

Theorem tailfb 36360
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfb ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))

Proof of Theorem tailfb
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5 𝑋 = dom 𝐷
21tailf 36358 . . . 4 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
32frnd 6745 . . 3 (𝐷 ∈ DirRel → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
43adantr 480 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
5 n0 4359 . . . . 5 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
6 ffn 6737 . . . . . . . 8 ((tail‘𝐷):𝑋⟶𝒫 𝑋 → (tail‘𝐷) Fn 𝑋)
7 fnfvelrn 7100 . . . . . . . . 9 (((tail‘𝐷) Fn 𝑋𝑥𝑋) → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷))
87ex 412 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
92, 6, 83syl 18 . . . . . . 7 (𝐷 ∈ DirRel → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
10 ne0i 4347 . . . . . . 7 (((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷) → ran (tail‘𝐷) ≠ ∅)
119, 10syl6 35 . . . . . 6 (𝐷 ∈ DirRel → (𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
1211exlimdv 1931 . . . . 5 (𝐷 ∈ DirRel → (∃𝑥 𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
135, 12biimtrid 242 . . . 4 (𝐷 ∈ DirRel → (𝑋 ≠ ∅ → ran (tail‘𝐷) ≠ ∅))
1413imp 406 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ≠ ∅)
151tailini 36359 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → 𝑥 ∈ ((tail‘𝐷)‘𝑥))
16 n0i 4346 . . . . . . . 8 (𝑥 ∈ ((tail‘𝐷)‘𝑥) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1715, 16syl 17 . . . . . . 7 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1817nrexdv 3147 . . . . . 6 (𝐷 ∈ DirRel → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
1918adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
20 fvelrnb 6969 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
212, 6, 203syl 18 . . . . . 6 (𝐷 ∈ DirRel → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2221adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2319, 22mtbird 325 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∅ ∈ ran (tail‘𝐷))
24 df-nel 3045 . . . 4 (∅ ∉ ran (tail‘𝐷) ↔ ¬ ∅ ∈ ran (tail‘𝐷))
2523, 24sylibr 234 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∅ ∉ ran (tail‘𝐷))
26 fvelrnb 6969 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥 ∈ ran (tail‘𝐷) ↔ ∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥))
27 fvelrnb 6969 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑦 ∈ ran (tail‘𝐷) ↔ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
2826, 27anbi12d 632 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
292, 6, 283syl 18 . . . . . 6 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
30 reeanv 3227 . . . . . . 7 (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
311dirge 18661 . . . . . . . . . . 11 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑣𝑋) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
32313expb 1119 . . . . . . . . . 10 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
332, 6syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ DirRel → (tail‘𝐷) Fn 𝑋)
34 fnfvelrn 7100 . . . . . . . . . . . . 13 (((tail‘𝐷) Fn 𝑋𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3533, 34sylan 580 . . . . . . . . . . . 12 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3635ad2ant2r 747 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
37 dirtr 18660 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑢𝐷𝑤𝑤𝐷𝑥)) → 𝑢𝐷𝑥)
3837exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
3938elvd 3484 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑢𝐷𝑤𝑢𝐷𝑥)))
4140imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑢𝐷𝑤𝑢𝐷𝑥))
4241ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑢𝐷𝑤𝑢𝐷𝑥))
43 dirtr 18660 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑣𝐷𝑤𝑤𝐷𝑥)) → 𝑣𝐷𝑥)
4443exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4544elvd 3484 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4645com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑣𝐷𝑤𝑣𝐷𝑥)))
4746imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4847ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4942, 48anim12d 609 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥)))
5049expr 456 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → (𝑤𝐷𝑥 → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5150com23 86 . . . . . . . . . . . . . . 15 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5251impr 454 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥)))
53 vex 3482 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
541eltail 36357 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ 𝑤𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5553, 54mp3an3 1449 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5655ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
571eltail 36357 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5853, 57mp3an3 1449 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑢𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5958adantrr 717 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
601eltail 36357 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑣𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6153, 60mp3an3 1449 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑣𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6261adantrl 716 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6359, 62anbi12d 632 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6463adantr 480 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6552, 56, 643imtr4d 294 . . . . . . . . . . . . 13 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣))))
66 elin 3979 . . . . . . . . . . . . 13 (𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)))
6765, 66imbitrrdi 252 . . . . . . . . . . . 12 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → 𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
6867ssrdv 4001 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
69 sseq1 4021 . . . . . . . . . . . 12 (𝑧 = ((tail‘𝐷)‘𝑤) → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
7069rspcev 3622 . . . . . . . . . . 11 ((((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷) ∧ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7136, 68, 70syl2anc 584 . . . . . . . . . 10 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7232, 71rexlimddv 3159 . . . . . . . . 9 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
73 ineq1 4221 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑢) = 𝑥 → (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) = (𝑥 ∩ ((tail‘𝐷)‘𝑣)))
7473sseq2d 4028 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑢) = 𝑥 → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
7574rexbidv 3177 . . . . . . . . . 10 (((tail‘𝐷)‘𝑢) = 𝑥 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
76 ineq2 4222 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑥 ∩ ((tail‘𝐷)‘𝑣)) = (𝑥𝑦))
7776sseq2d 4028 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥𝑦)))
7877rexbidv 3177 . . . . . . . . . 10 (((tail‘𝐷)‘𝑣) = 𝑦 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
7975, 78sylan9bb 509 . . . . . . . . 9 ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8072, 79syl5ibcom 245 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8180rexlimdvva 3211 . . . . . . 7 (𝐷 ∈ DirRel → (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8230, 81biimtrrid 243 . . . . . 6 (𝐷 ∈ DirRel → ((∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8329, 82sylbid 240 . . . . 5 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8483adantr 480 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8584ralrimivv 3198 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦))
8614, 25, 853jca 1127 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
87 dmexg 7924 . . . . 5 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
881, 87eqeltrid 2843 . . . 4 (𝐷 ∈ DirRel → 𝑋 ∈ V)
8988adantr 480 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V)
90 isfbas2 23859 . . 3 (𝑋 ∈ V → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
9189, 90syl 17 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
924, 86, 91mpbir2and 713 1 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wnel 3044  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148  dom cdm 5689  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  DirRelcdir 18652  tailctail 18653  fBascfbas 21370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-dir 18654  df-tail 18655  df-fbas 21379
This theorem is referenced by:  filnetlem4  36364
  Copyright terms: Public domain W3C validator