Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Structured version   Visualization version   GIF version

Theorem tailfb 36378
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfb ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))

Proof of Theorem tailfb
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5 𝑋 = dom 𝐷
21tailf 36376 . . . 4 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
32frnd 6744 . . 3 (𝐷 ∈ DirRel → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
43adantr 480 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ⊆ 𝒫 𝑋)
5 n0 4353 . . . . 5 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
6 ffn 6736 . . . . . . . 8 ((tail‘𝐷):𝑋⟶𝒫 𝑋 → (tail‘𝐷) Fn 𝑋)
7 fnfvelrn 7100 . . . . . . . . 9 (((tail‘𝐷) Fn 𝑋𝑥𝑋) → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷))
87ex 412 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
92, 6, 83syl 18 . . . . . . 7 (𝐷 ∈ DirRel → (𝑥𝑋 → ((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷)))
10 ne0i 4341 . . . . . . 7 (((tail‘𝐷)‘𝑥) ∈ ran (tail‘𝐷) → ran (tail‘𝐷) ≠ ∅)
119, 10syl6 35 . . . . . 6 (𝐷 ∈ DirRel → (𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
1211exlimdv 1933 . . . . 5 (𝐷 ∈ DirRel → (∃𝑥 𝑥𝑋 → ran (tail‘𝐷) ≠ ∅))
135, 12biimtrid 242 . . . 4 (𝐷 ∈ DirRel → (𝑋 ≠ ∅ → ran (tail‘𝐷) ≠ ∅))
1413imp 406 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ≠ ∅)
151tailini 36377 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → 𝑥 ∈ ((tail‘𝐷)‘𝑥))
16 n0i 4340 . . . . . . . 8 (𝑥 ∈ ((tail‘𝐷)‘𝑥) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1715, 16syl 17 . . . . . . 7 ((𝐷 ∈ DirRel ∧ 𝑥𝑋) → ¬ ((tail‘𝐷)‘𝑥) = ∅)
1817nrexdv 3149 . . . . . 6 (𝐷 ∈ DirRel → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
1918adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅)
20 fvelrnb 6969 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
212, 6, 203syl 18 . . . . . 6 (𝐷 ∈ DirRel → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2221adantr 480 . . . . 5 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (∅ ∈ ran (tail‘𝐷) ↔ ∃𝑥𝑋 ((tail‘𝐷)‘𝑥) = ∅))
2319, 22mtbird 325 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ¬ ∅ ∈ ran (tail‘𝐷))
24 df-nel 3047 . . . 4 (∅ ∉ ran (tail‘𝐷) ↔ ¬ ∅ ∈ ran (tail‘𝐷))
2523, 24sylibr 234 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∅ ∉ ran (tail‘𝐷))
26 fvelrnb 6969 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑥 ∈ ran (tail‘𝐷) ↔ ∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥))
27 fvelrnb 6969 . . . . . . . 8 ((tail‘𝐷) Fn 𝑋 → (𝑦 ∈ ran (tail‘𝐷) ↔ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
2826, 27anbi12d 632 . . . . . . 7 ((tail‘𝐷) Fn 𝑋 → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
292, 6, 283syl 18 . . . . . 6 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦)))
30 reeanv 3229 . . . . . . 7 (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) ↔ (∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦))
311dirge 18648 . . . . . . . . . . 11 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑣𝑋) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
32313expb 1121 . . . . . . . . . 10 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑤𝑋 (𝑢𝐷𝑤𝑣𝐷𝑤))
332, 6syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ DirRel → (tail‘𝐷) Fn 𝑋)
34 fnfvelrn 7100 . . . . . . . . . . . . 13 (((tail‘𝐷) Fn 𝑋𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3533, 34sylan 580 . . . . . . . . . . . 12 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
3635ad2ant2r 747 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷))
37 dirtr 18647 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑢𝐷𝑤𝑤𝐷𝑥)) → 𝑢𝐷𝑥)
3837exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
3938elvd 3486 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑢𝐷𝑤 → (𝑤𝐷𝑥𝑢𝐷𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑢𝐷𝑤𝑢𝐷𝑥)))
4140imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑢𝐷𝑤𝑢𝐷𝑥))
4241ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑢𝐷𝑤𝑢𝐷𝑥))
43 dirtr 18647 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) ∧ (𝑣𝐷𝑤𝑤𝐷𝑥)) → 𝑣𝐷𝑥)
4443exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ DirRel ∧ 𝑥 ∈ V) → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4544elvd 3486 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ DirRel → (𝑣𝐷𝑤 → (𝑤𝐷𝑥𝑣𝐷𝑥)))
4645com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ DirRel → (𝑤𝐷𝑥 → (𝑣𝐷𝑤𝑣𝐷𝑥)))
4746imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ DirRel ∧ 𝑤𝐷𝑥) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4847ad2ant2rl 749 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → (𝑣𝐷𝑤𝑣𝐷𝑥))
4942, 48anim12d 609 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋𝑤𝐷𝑥)) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥)))
5049expr 456 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → (𝑤𝐷𝑥 → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5150com23 86 . . . . . . . . . . . . . . 15 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ 𝑤𝑋) → ((𝑢𝐷𝑤𝑣𝐷𝑤) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥))))
5251impr 454 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑤𝐷𝑥 → (𝑢𝐷𝑥𝑣𝐷𝑥)))
53 vex 3484 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
541eltail 36375 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ 𝑤𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5553, 54mp3an3 1452 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ 𝑤𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
5655ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) ↔ 𝑤𝐷𝑥))
571eltail 36375 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑢𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5853, 57mp3an3 1452 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑢𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
5958adantrr 717 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ↔ 𝑢𝐷𝑥))
601eltail 36375 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ DirRel ∧ 𝑣𝑋𝑥 ∈ V) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6153, 60mp3an3 1452 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ DirRel ∧ 𝑣𝑋) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6261adantrl 716 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → (𝑥 ∈ ((tail‘𝐷)‘𝑣) ↔ 𝑣𝐷𝑥))
6359, 62anbi12d 632 . . . . . . . . . . . . . . 15 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6463adantr 480 . . . . . . . . . . . . . 14 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)) ↔ (𝑢𝐷𝑥𝑣𝐷𝑥)))
6552, 56, 643imtr4d 294 . . . . . . . . . . . . 13 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣))))
66 elin 3967 . . . . . . . . . . . . 13 (𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ (𝑥 ∈ ((tail‘𝐷)‘𝑢) ∧ 𝑥 ∈ ((tail‘𝐷)‘𝑣)))
6765, 66imbitrrdi 252 . . . . . . . . . . . 12 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → (𝑥 ∈ ((tail‘𝐷)‘𝑤) → 𝑥 ∈ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
6867ssrdv 3989 . . . . . . . . . . 11 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
69 sseq1 4009 . . . . . . . . . . . 12 (𝑧 = ((tail‘𝐷)‘𝑤) → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))))
7069rspcev 3622 . . . . . . . . . . 11 ((((tail‘𝐷)‘𝑤) ∈ ran (tail‘𝐷) ∧ ((tail‘𝐷)‘𝑤) ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7136, 68, 70syl2anc 584 . . . . . . . . . 10 (((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) ∧ (𝑤𝑋 ∧ (𝑢𝐷𝑤𝑣𝐷𝑤))) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
7232, 71rexlimddv 3161 . . . . . . . . 9 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)))
73 ineq1 4213 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑢) = 𝑥 → (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) = (𝑥 ∩ ((tail‘𝐷)‘𝑣)))
7473sseq2d 4016 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑢) = 𝑥 → (𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
7574rexbidv 3179 . . . . . . . . . 10 (((tail‘𝐷)‘𝑢) = 𝑥 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣))))
76 ineq2 4214 . . . . . . . . . . . 12 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑥 ∩ ((tail‘𝐷)‘𝑣)) = (𝑥𝑦))
7776sseq2d 4016 . . . . . . . . . . 11 (((tail‘𝐷)‘𝑣) = 𝑦 → (𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ 𝑧 ⊆ (𝑥𝑦)))
7877rexbidv 3179 . . . . . . . . . 10 (((tail‘𝐷)‘𝑣) = 𝑦 → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥 ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
7975, 78sylan9bb 509 . . . . . . . . 9 ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → (∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (((tail‘𝐷)‘𝑢) ∩ ((tail‘𝐷)‘𝑣)) ↔ ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8072, 79syl5ibcom 245 . . . . . . . 8 ((𝐷 ∈ DirRel ∧ (𝑢𝑋𝑣𝑋)) → ((((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8180rexlimdvva 3213 . . . . . . 7 (𝐷 ∈ DirRel → (∃𝑢𝑋𝑣𝑋 (((tail‘𝐷)‘𝑢) = 𝑥 ∧ ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8230, 81biimtrrid 243 . . . . . 6 (𝐷 ∈ DirRel → ((∃𝑢𝑋 ((tail‘𝐷)‘𝑢) = 𝑥 ∧ ∃𝑣𝑋 ((tail‘𝐷)‘𝑣) = 𝑦) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8329, 82sylbid 240 . . . . 5 (𝐷 ∈ DirRel → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8483adantr 480 . . . 4 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ((𝑥 ∈ ran (tail‘𝐷) ∧ 𝑦 ∈ ran (tail‘𝐷)) → ∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
8584ralrimivv 3200 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦))
8614, 25, 853jca 1129 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))
87 dmexg 7923 . . . . 5 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
881, 87eqeltrid 2845 . . . 4 (𝐷 ∈ DirRel → 𝑋 ∈ V)
8988adantr 480 . . 3 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V)
90 isfbas2 23843 . . 3 (𝑋 ∈ V → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
9189, 90syl 17 . 2 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → (ran (tail‘𝐷) ∈ (fBas‘𝑋) ↔ (ran (tail‘𝐷) ⊆ 𝒫 𝑋 ∧ (ran (tail‘𝐷) ≠ ∅ ∧ ∅ ∉ ran (tail‘𝐷) ∧ ∀𝑥 ∈ ran (tail‘𝐷)∀𝑦 ∈ ran (tail‘𝐷)∃𝑧 ∈ ran (tail‘𝐷)𝑧 ⊆ (𝑥𝑦)))))
924, 86, 91mpbir2and 713 1 ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wnel 3046  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   class class class wbr 5143  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  DirRelcdir 18639  tailctail 18640  fBascfbas 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-dir 18641  df-tail 18642  df-fbas 21361
This theorem is referenced by:  filnetlem4  36382
  Copyright terms: Public domain W3C validator