MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptsng Structured version   Visualization version   GIF version

Theorem fmptsng 6629
Description: Express a singleton function in maps-to notation. Version of fmptsn 6628 allowing the value 𝐵 to depend on the variable 𝑥. (Contributed by AV, 27-Feb-2019.)
Hypothesis
Ref Expression
fmptsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
fmptsng ((𝐴𝑉𝐶𝑊) → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem fmptsng
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4352 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21bicomi 215 . . . 4 (𝑥 = 𝐴𝑥 ∈ {𝐴})
32anbi1i 617 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵))
43opabbii 4878 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
5 velsn 4352 . . . . 5 (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 = ⟨𝐴, 𝐶⟩)
6 eqidd 2766 . . . . . . 7 ((𝐴𝑉𝐶𝑊) → 𝐴 = 𝐴)
7 eqidd 2766 . . . . . . 7 ((𝐴𝑉𝐶𝑊) → 𝐶 = 𝐶)
8 eqeq1 2769 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
98adantr 472 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐶) → (𝑥 = 𝐴𝐴 = 𝐴))
10 eqeq1 2769 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
11 fmptsng.1 . . . . . . . . . . 11 (𝑥 = 𝐴𝐵 = 𝐶)
1211eqeq2d 2775 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐶 = 𝐵𝐶 = 𝐶))
1310, 12sylan9bbr 506 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐶) → (𝑦 = 𝐵𝐶 = 𝐶))
149, 13anbi12d 624 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐶) → ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
1514opelopabga 5151 . . . . . . 7 ((𝐴𝑉𝐶𝑊) → (⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
166, 7, 15mpbir2and 704 . . . . . 6 ((𝐴𝑉𝐶𝑊) → ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
17 eleq1 2832 . . . . . 6 (𝑝 = ⟨𝐴, 𝐶⟩ → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
1816, 17syl5ibrcom 238 . . . . 5 ((𝐴𝑉𝐶𝑊) → (𝑝 = ⟨𝐴, 𝐶⟩ → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
195, 18syl5bi 233 . . . 4 ((𝐴𝑉𝐶𝑊) → (𝑝 ∈ {⟨𝐴, 𝐶⟩} → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
20 elopab 5146 . . . . 5 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)))
21 opeq12 4563 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2221eqeq2d 2775 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 = ⟨𝑥, 𝑦⟩ ↔ 𝑝 = ⟨𝐴, 𝐵⟩))
2311adantr 472 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐵 = 𝐶)
2423opeq2d 4568 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐶⟩)
25 opex 5090 . . . . . . . . . . . 12 𝐴, 𝐶⟩ ∈ V
2625snid 4368 . . . . . . . . . . 11 𝐴, 𝐶⟩ ∈ {⟨𝐴, 𝐶⟩}
2724, 26syl6eqel 2852 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩})
28 eleq1 2832 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩}))
2927, 28syl5ibrcom 238 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 = ⟨𝐴, 𝐵⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
3022, 29sylbid 231 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
3130impcom 396 . . . . . . 7 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩})
3231exlimivv 2027 . . . . . 6 (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩})
3332a1i 11 . . . . 5 ((𝐴𝑉𝐶𝑊) → (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
3420, 33syl5bi 233 . . . 4 ((𝐴𝑉𝐶𝑊) → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
3519, 34impbid 203 . . 3 ((𝐴𝑉𝐶𝑊) → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
3635eqrdv 2763 . 2 ((𝐴𝑉𝐶𝑊) → {⟨𝐴, 𝐶⟩} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
37 df-mpt 4891 . . 3 (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
3837a1i 11 . 2 ((𝐴𝑉𝐶𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)})
394, 36, 383eqtr4a 2825 1 ((𝐴𝑉𝐶𝑊) → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  {csn 4336  cop 4342  {copab 4873  cmpt 4890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-opab 4874  df-mpt 4891
This theorem is referenced by:  mdet0pr  20678  m1detdiag  20683
  Copyright terms: Public domain W3C validator