Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (∅
maDet 𝑅) = (∅ maDet
𝑅) |
2 | | eqid 2738 |
. . . 4
⊢ (∅
Mat 𝑅) = (∅ Mat 𝑅) |
3 | | eqid 2738 |
. . . 4
⊢
(Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅)) |
4 | | eqid 2738 |
. . . 4
⊢
(Base‘(SymGrp‘∅)) =
(Base‘(SymGrp‘∅)) |
5 | | eqid 2738 |
. . . 4
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
6 | | eqid 2738 |
. . . 4
⊢
(pmSgn‘∅) = (pmSgn‘∅) |
7 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
8 | | eqid 2738 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetfval 21643 |
. . 3
⊢ (∅
maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat
𝑅)) ↦ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
10 | 9 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring → (∅
maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat
𝑅)) ↦ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
11 | | mat0dimbas0 21523 |
. . 3
⊢ (𝑅 ∈ Ring →
(Base‘(∅ Mat 𝑅)) = {∅}) |
12 | 11 | mpteq1d 5165 |
. 2
⊢ (𝑅 ∈ Ring → (𝑚 ∈ (Base‘(∅ Mat
𝑅)) ↦ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
13 | | 0ex 5226 |
. . . . 5
⊢ ∅
∈ V |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝑅 ∈ Ring → ∅
∈ V) |
15 | | ovex 7288 |
. . . 4
⊢ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)))))) ∈ V |
16 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)∅𝑥)) |
17 | 16 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))) |
18 | 17 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = ∅ →
((mulGrp‘𝑅)
Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)))) |
19 | 18 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = ∅ →
((((ℤRHom‘𝑅)
∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))) = ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))))) |
20 | 19 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑚 = ∅ → (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥)))))) |
21 | 20 | oveq2d 7271 |
. . . . 5
⊢ (𝑚 = ∅ → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))))))) |
22 | 21 | fmptsng 7022 |
. . . 4
⊢ ((∅
∈ V ∧ (𝑅
Σg (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥)))))) ∈ V) → {〈∅,
(𝑅
Σg (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥))))))〉} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
23 | 14, 15, 22 | sylancl 585 |
. . 3
⊢ (𝑅 ∈ Ring →
{〈∅, (𝑅
Σg (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥))))))〉} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
24 | | mpt0 6559 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)) = ∅ |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)) = ∅) |
26 | 25 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))) = ((mulGrp‘𝑅) Σg
∅)) |
27 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘(mulGrp‘𝑅)) =
(0g‘(mulGrp‘𝑅)) |
28 | 27 | gsum0 18283 |
. . . . . . . . . 10
⊢
((mulGrp‘𝑅)
Σg ∅) = (0g‘(mulGrp‘𝑅)) |
29 | 26, 28 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))) =
(0g‘(mulGrp‘𝑅))) |
30 | 29 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((((ℤRHom‘𝑅)
∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)))) = ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅)))) |
31 | 30 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅))))) |
32 | 31 | oveq2d 7271 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅)))))) |
33 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (1r‘𝑅) |
34 | 8, 33 | ringidval 19654 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
35 | 34 | eqcomi 2747 |
. . . . . . . . . . 11
⊢
(0g‘(mulGrp‘𝑅)) = (1r‘𝑅) |
36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) →
(0g‘(mulGrp‘𝑅)) = (1r‘𝑅)) |
37 | 36 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅))) =
((((ℤRHom‘𝑅)
∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)(1r‘𝑅))) |
38 | | 0fin 8916 |
. . . . . . . . . . 11
⊢ ∅
∈ Fin |
39 | 4, 6, 5 | zrhcopsgnelbas 20712 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ∅
∈ Fin ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) |
40 | 38, 39 | mp3an2 1447 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) |
41 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
42 | 41, 7, 33 | ringridm 19726 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧
(((ℤRHom‘𝑅)
∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(1r‘𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)) |
43 | 40, 42 | syldan 590 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(1r‘𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)) |
44 | 37, 43 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅))) = (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)) |
45 | 44 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅)))) = (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) |
46 | 45 | oveq2d 7271 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)(0g‘(mulGrp‘𝑅))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)))) |
47 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → 𝑅 ∈ Ring) |
48 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → ∅ ∈
Fin) |
49 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → 𝑝 ∈
(Base‘(SymGrp‘∅))) |
50 | | elsni 4575 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ {∅} → 𝑝 = ∅) |
51 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = ∅ →
((pmSgn‘∅)‘𝑝) =
((pmSgn‘∅)‘∅)) |
52 | | psgn0fv0 19034 |
. . . . . . . . . . . . . . 15
⊢
((pmSgn‘∅)‘∅) = 1 |
53 | 51, 52 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∅ →
((pmSgn‘∅)‘𝑝) = 1) |
54 | 50, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ {∅} →
((pmSgn‘∅)‘𝑝) = 1) |
55 | | symgbas0 18911 |
. . . . . . . . . . . . 13
⊢
(Base‘(SymGrp‘∅)) = {∅} |
56 | 54, 55 | eleq2s 2857 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
(Base‘(SymGrp‘∅)) → ((pmSgn‘∅)‘𝑝) = 1) |
57 | 56 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → ((pmSgn‘∅)‘𝑝) = 1) |
58 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(SymGrp‘∅) = (SymGrp‘∅) |
59 | 58, 4, 6 | psgnevpmb 20704 |
. . . . . . . . . . . 12
⊢ (∅
∈ Fin → (𝑝 ∈
(pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅))
∧ ((pmSgn‘∅)‘𝑝) = 1))) |
60 | 48, 59 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈
(Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1))) |
61 | 49, 57, 60 | mpbir2and 709 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → 𝑝 ∈
(pmEven‘∅)) |
62 | 5, 6, 33 | zrhpsgnevpm 20708 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ∅
∈ Fin ∧ 𝑝 ∈
(pmEven‘∅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r‘𝑅)) |
63 | 47, 48, 61, 62 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈
(Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝) = (1r‘𝑅)) |
64 | 63 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)) = (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ (1r‘𝑅))) |
65 | 64 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (1r‘𝑅)))) |
66 | 55 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Base‘(SymGrp‘∅)) = {∅}) |
67 | 66 | mpteq1d 5165 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (1r‘𝑅)) = (𝑝 ∈ {∅} ↦
(1r‘𝑅))) |
68 | 67 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (1r‘𝑅))) = (𝑅 Σg (𝑝 ∈ {∅} ↦
(1r‘𝑅)))) |
69 | | ringmnd 19708 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
70 | 41, 33 | ringidcl 19722 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
71 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝑝 = ∅ →
(1r‘𝑅) =
(1r‘𝑅)) |
72 | 41, 71 | gsumsn 19470 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ ∅ ∈
V ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑝 ∈ {∅} ↦
(1r‘𝑅))) =
(1r‘𝑅)) |
73 | 69, 14, 70, 72 | syl3anc 1369 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈ {∅} ↦
(1r‘𝑅))) =
(1r‘𝑅)) |
74 | 65, 68, 73 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝))) = (1r‘𝑅)) |
75 | 32, 46, 74 | 3eqtrd 2782 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)∅𝑥)))))) = (1r‘𝑅)) |
76 | 75 | opeq2d 4808 |
. . . 4
⊢ (𝑅 ∈ Ring →
〈∅, (𝑅
Σg (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥))))))〉 = 〈∅,
(1r‘𝑅)〉) |
77 | 76 | sneqd 4570 |
. . 3
⊢ (𝑅 ∈ Ring →
{〈∅, (𝑅
Σg (𝑝 ∈ (Base‘(SymGrp‘∅))
↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ ∅ ↦
((𝑝‘𝑥)∅𝑥))))))〉} = {〈∅,
(1r‘𝑅)〉}) |
78 | 23, 77 | eqtr3d 2780 |
. 2
⊢ (𝑅 ∈ Ring → (𝑚 ∈ {∅} ↦ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘
(pmSgn‘∅))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = {〈∅,
(1r‘𝑅)〉}) |
79 | 10, 12, 78 | 3eqtrd 2782 |
1
⊢ (𝑅 ∈ Ring → (∅
maDet 𝑅) = {〈∅,
(1r‘𝑅)〉}) |