MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet0pr Structured version   Visualization version   GIF version

Theorem mdet0pr 22314
Description: The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019.)
Assertion
Ref Expression
mdet0pr (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})

Proof of Theorem mdet0pr
Dummy variables 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (∅ maDet 𝑅) = (∅ maDet 𝑅)
2 eqid 2730 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
3 eqid 2730 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
4 eqid 2730 . . . 4 (Base‘(SymGrp‘∅)) = (Base‘(SymGrp‘∅))
5 eqid 2730 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2730 . . . 4 (pmSgn‘∅) = (pmSgn‘∅)
7 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2730 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetfval 22308 . . 3 (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))))
109a1i 11 . 2 (𝑅 ∈ Ring → (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
11 mat0dimbas0 22188 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
1211mpteq1d 5242 . 2 (𝑅 ∈ Ring → (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
13 0ex 5306 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ∈ V)
15 ovex 7444 . . . 4 (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V
16 oveq 7417 . . . . . . . . . 10 (𝑚 = ∅ → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)∅𝑥))
1716mpteq2dv 5249 . . . . . . . . 9 (𝑚 = ∅ → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))
1817oveq2d 7427 . . . . . . . 8 (𝑚 = ∅ → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))
1918oveq2d 7427 . . . . . . 7 (𝑚 = ∅ → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))
2019mpteq2dv 5249 . . . . . 6 (𝑚 = ∅ → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))
2120oveq2d 7427 . . . . 5 (𝑚 = ∅ → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))))
2221fmptsng 7167 . . . 4 ((∅ ∈ V ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V) → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
2314, 15, 22sylancl 584 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
24 mpt0 6691 . . . . . . . . . . . 12 (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅
2524a1i 11 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅)
2625oveq2d 7427 . . . . . . . . . 10 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = ((mulGrp‘𝑅) Σg ∅))
27 eqid 2730 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
2827gsum0 18609 . . . . . . . . . 10 ((mulGrp‘𝑅) Σg ∅) = (0g‘(mulGrp‘𝑅))
2926, 28eqtrdi 2786 . . . . . . . . 9 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = (0g‘(mulGrp‘𝑅)))
3029oveq2d 7427 . . . . . . . 8 (𝑅 ∈ Ring → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))
3130mpteq2dv 5249 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))))
3231oveq2d 7427 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))))
33 eqid 2730 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
348, 33ringidval 20077 . . . . . . . . . . . 12 (1r𝑅) = (0g‘(mulGrp‘𝑅))
3534eqcomi 2739 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (1r𝑅)
3635a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
3736oveq2d 7427 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)))
38 0fin 9173 . . . . . . . . . . 11 ∅ ∈ Fin
394, 6, 5zrhcopsgnelbas 21367 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
4038, 39mp3an2 1447 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
41 eqid 2730 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4241, 7, 33ringridm 20158 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4340, 42syldan 589 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4437, 43eqtrd 2770 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4544mpteq2dva 5247 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)))
4645oveq2d 7427 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))))
47 simpl 481 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑅 ∈ Ring)
4838a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ∅ ∈ Fin)
49 simpr 483 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (Base‘(SymGrp‘∅)))
50 elsni 4644 . . . . . . . . . . . . . 14 (𝑝 ∈ {∅} → 𝑝 = ∅)
51 fveq2 6890 . . . . . . . . . . . . . . 15 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = ((pmSgn‘∅)‘∅))
52 psgn0fv0 19420 . . . . . . . . . . . . . . 15 ((pmSgn‘∅)‘∅) = 1
5351, 52eqtrdi 2786 . . . . . . . . . . . . . 14 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = 1)
5450, 53syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ {∅} → ((pmSgn‘∅)‘𝑝) = 1)
55 symgbas0 19297 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
5654, 55eleq2s 2849 . . . . . . . . . . . 12 (𝑝 ∈ (Base‘(SymGrp‘∅)) → ((pmSgn‘∅)‘𝑝) = 1)
5756adantl 480 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((pmSgn‘∅)‘𝑝) = 1)
58 eqid 2730 . . . . . . . . . . . . 13 (SymGrp‘∅) = (SymGrp‘∅)
5958, 4, 6psgnevpmb 21359 . . . . . . . . . . . 12 (∅ ∈ Fin → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6048, 59syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6149, 57, 60mpbir2and 709 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (pmEven‘∅))
625, 6, 33zrhpsgnevpm 21363 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (pmEven‘∅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6347, 48, 61, 62syl3anc 1369 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6463mpteq2dva 5247 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)))
6564oveq2d 7427 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))))
6655a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘(SymGrp‘∅)) = {∅})
6766mpteq1d 5242 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)) = (𝑝 ∈ {∅} ↦ (1r𝑅)))
6867oveq2d 7427 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))) = (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))))
69 ringmnd 20137 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
7041, 33ringidcl 20154 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
71 eqidd 2731 . . . . . . . . 9 (𝑝 = ∅ → (1r𝑅) = (1r𝑅))
7241, 71gsumsn 19863 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ∅ ∈ V ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7369, 14, 70, 72syl3anc 1369 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7465, 68, 733eqtrd 2774 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (1r𝑅))
7532, 46, 743eqtrd 2774 . . . . 5 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (1r𝑅))
7675opeq2d 4879 . . . 4 (𝑅 ∈ Ring → ⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩ = ⟨∅, (1r𝑅)⟩)
7776sneqd 4639 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = {⟨∅, (1r𝑅)⟩})
7823, 77eqtr3d 2772 . 2 (𝑅 ∈ Ring → (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = {⟨∅, (1r𝑅)⟩})
7910, 12, 783eqtrd 2774 1 (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  c0 4321  {csn 4627  cop 4633  cmpt 5230  ccom 5679  cfv 6542  (class class class)co 7411  Fincfn 8941  1c1 11113  Basecbs 17148  .rcmulr 17202  0gc0g 17389   Σg cgsu 17390  Mndcmnd 18659  SymGrpcsymg 19275  pmSgncpsgn 19398  pmEvencevpm 19399  mulGrpcmgp 20028  1rcur 20075  Ringcrg 20127  ℤRHomczrh 21268   Mat cmat 22127   maDet cmdat 22306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-xor 1508  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-seq 13971  df-exp 14032  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-splice 14704  df-reverse 14713  df-s2 14803  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-0g 17391  df-gsum 17392  df-prds 17397  df-pws 17399  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-efmnd 18786  df-grp 18858  df-minusg 18859  df-mulg 18987  df-subg 19039  df-ghm 19128  df-gim 19173  df-cntz 19222  df-oppg 19251  df-symg 19276  df-pmtr 19351  df-psgn 19400  df-evpm 19401  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-rhm 20363  df-subrng 20434  df-subrg 20459  df-drng 20502  df-sra 20930  df-rgmod 20931  df-cnfld 21145  df-zring 21218  df-zrh 21272  df-dsmm 21506  df-frlm 21521  df-mat 22128  df-mdet 22307
This theorem is referenced by:  mdet0f1o  22315  mdet0fv0  22316  chpmat0d  22556
  Copyright terms: Public domain W3C validator