![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnimadisj | Structured version Visualization version GIF version |
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fnimadisj | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6606 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | ineq1d 4172 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
3 | 2 | eqeq1d 2735 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((dom 𝐹 ∩ 𝐶) = ∅ ↔ (𝐴 ∩ 𝐶) = ∅)) |
4 | 3 | biimpar 479 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (dom 𝐹 ∩ 𝐶) = ∅) |
5 | imadisj 6033 | . 2 ⊢ ((𝐹 “ 𝐶) = ∅ ↔ (dom 𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∩ cin 3910 ∅c0 4283 dom cdm 5634 “ cima 5637 Fn wfn 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fn 6500 |
This theorem is referenced by: poimirlem15 36139 aacllem 47334 |
Copyright terms: Public domain | W3C validator |