| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnimadisj | Structured version Visualization version GIF version | ||
| Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| fnimadisj | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6592 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 2 | 1 | ineq1d 4168 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
| 3 | 2 | eqeq1d 2735 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((dom 𝐹 ∩ 𝐶) = ∅ ↔ (𝐴 ∩ 𝐶) = ∅)) |
| 4 | 3 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (dom 𝐹 ∩ 𝐶) = ∅) |
| 5 | imadisj 6036 | . 2 ⊢ ((𝐹 “ 𝐶) = ∅ ↔ (dom 𝐹 ∩ 𝐶) = ∅) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3897 ∅c0 4282 dom cdm 5621 “ cima 5624 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fn 6492 |
| This theorem is referenced by: poimirlem15 37748 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |