| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnimadisj | Structured version Visualization version GIF version | ||
| Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| fnimadisj | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6579 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 2 | 1 | ineq1d 4164 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
| 3 | 2 | eqeq1d 2733 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((dom 𝐹 ∩ 𝐶) = ∅ ↔ (𝐴 ∩ 𝐶) = ∅)) |
| 4 | 3 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (dom 𝐹 ∩ 𝐶) = ∅) |
| 5 | imadisj 6024 | . 2 ⊢ ((𝐹 “ 𝐶) = ∅ ↔ (dom 𝐹 ∩ 𝐶) = ∅) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3896 ∅c0 4278 dom cdm 5611 “ cima 5614 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fn 6479 |
| This theorem is referenced by: poimirlem15 37675 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |