MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimadisj Structured version   Visualization version   GIF version

Theorem fnimadisj 6621
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fnimadisj ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)

Proof of Theorem fnimadisj
StepHypRef Expression
1 fndm 6592 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21ineq1d 4168 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐶) = (𝐴𝐶))
32eqeq1d 2735 . . 3 (𝐹 Fn 𝐴 → ((dom 𝐹𝐶) = ∅ ↔ (𝐴𝐶) = ∅))
43biimpar 477 . 2 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
5 imadisj 6036 . 2 ((𝐹𝐶) = ∅ ↔ (dom 𝐹𝐶) = ∅)
64, 5sylibr 234 1 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cin 3897  c0 4282  dom cdm 5621  cima 5624   Fn wfn 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fn 6492
This theorem is referenced by:  poimirlem15  37748  aacllem  49962
  Copyright terms: Public domain W3C validator