Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnimadisj | Structured version Visualization version GIF version |
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fnimadisj | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6588 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | ineq1d 4158 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
3 | 2 | eqeq1d 2738 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((dom 𝐹 ∩ 𝐶) = ∅ ↔ (𝐴 ∩ 𝐶) = ∅)) |
4 | 3 | biimpar 478 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (dom 𝐹 ∩ 𝐶) = ∅) |
5 | imadisj 6018 | . 2 ⊢ ((𝐹 “ 𝐶) = ∅ ↔ (dom 𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∩ cin 3897 ∅c0 4269 dom cdm 5620 “ cima 5623 Fn wfn 6474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-fn 6482 |
This theorem is referenced by: poimirlem15 35905 aacllem 46865 |
Copyright terms: Public domain | W3C validator |