Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnimaeq0 | Structured version Visualization version GIF version |
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 40403. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
fnimaeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisj 5925 | . 2 ⊢ ((𝐹 “ 𝐵) = ∅ ↔ (dom 𝐹 ∩ 𝐵) = ∅) | |
2 | incom 4108 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) = (𝐵 ∩ dom 𝐹) | |
3 | fndm 6441 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 3926 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | df-ss 3877 | . . . . 5 ⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) | |
7 | 5, 6 | sylib 221 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵) |
8 | 2, 7 | syl5eq 2805 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ 𝐵) = 𝐵) |
9 | 8 | eqeq1d 2760 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((dom 𝐹 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 1, 9 | syl5bb 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∩ cin 3859 ⊆ wss 3860 ∅c0 4227 dom cdm 5528 “ cima 5531 Fn wfn 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-fn 6343 |
This theorem is referenced by: ipodrsima 17854 mdegldg 24779 ig1peu 24884 ig1pdvds 24889 dimval 31219 dimvalfi 31220 nummin 32595 kelac1 40415 |
Copyright terms: Public domain | W3C validator |