MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimaeq0 Structured version   Visualization version   GIF version

Theorem fnimaeq0 6673
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 42248. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 6069 . 2 ((𝐹𝐵) = ∅ ↔ (dom 𝐹𝐵) = ∅)
2 incom 4193 . . . 4 (dom 𝐹𝐵) = (𝐵 ∩ dom 𝐹)
3 fndm 6642 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 4006 . . . . . 6 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 df-ss 3957 . . . . 5 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
75, 6sylib 217 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵)
82, 7eqtrid 2776 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (dom 𝐹𝐵) = 𝐵)
98eqeq1d 2726 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((dom 𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
101, 9bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  cin 3939  wss 3940  c0 4314  dom cdm 5666  cima 5669   Fn wfn 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-fn 6536
This theorem is referenced by:  ipodrsima  18495  mdegldg  25923  ig1peu  26028  ig1pdvds  26033  dimval  33130  dimvalfi  33131  nummin  34549  kelac1  42260
  Copyright terms: Public domain W3C validator