![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnimaeq0 | Structured version Visualization version GIF version |
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 42248. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
fnimaeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisj 6069 | . 2 ⊢ ((𝐹 “ 𝐵) = ∅ ↔ (dom 𝐹 ∩ 𝐵) = ∅) | |
2 | incom 4193 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) = (𝐵 ∩ dom 𝐹) | |
3 | fndm 6642 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 4006 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 477 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | df-ss 3957 | . . . . 5 ⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵) |
8 | 2, 7 | eqtrid 2776 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ 𝐵) = 𝐵) |
9 | 8 | eqeq1d 2726 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((dom 𝐹 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 1, 9 | bitrid 283 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 dom cdm 5666 “ cima 5669 Fn wfn 6528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-fn 6536 |
This theorem is referenced by: ipodrsima 18495 mdegldg 25923 ig1peu 26028 ig1pdvds 26033 dimval 33130 dimvalfi 33131 nummin 34549 kelac1 42260 |
Copyright terms: Public domain | W3C validator |