![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnimaeq0 | Structured version Visualization version GIF version |
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 39076. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
fnimaeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisj 5785 | . 2 ⊢ ((𝐹 “ 𝐵) = ∅ ↔ (dom 𝐹 ∩ 𝐵) = ∅) | |
2 | incom 4060 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) = (𝐵 ∩ dom 𝐹) | |
3 | fndm 6285 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 3883 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 470 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | df-ss 3837 | . . . . 5 ⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) | |
7 | 5, 6 | sylib 210 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵) |
8 | 2, 7 | syl5eq 2820 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ 𝐵) = 𝐵) |
9 | 8 | eqeq1d 2774 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((dom 𝐹 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 1, 9 | syl5bb 275 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∩ cin 3822 ⊆ wss 3823 ∅c0 4172 dom cdm 5403 “ cima 5406 Fn wfn 6180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-cnv 5411 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-fn 6188 |
This theorem is referenced by: ipodrsima 17645 mdegldg 24375 ig1peu 24480 ig1pdvds 24485 dimval 30659 dimvalfi 30660 kelac1 39088 |
Copyright terms: Public domain | W3C validator |