MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimaeq0 Structured version   Visualization version   GIF version

Theorem fnimaeq0 6622
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 43208. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 6036 . 2 ((𝐹𝐵) = ∅ ↔ (dom 𝐹𝐵) = ∅)
2 incom 4158 . . . 4 (dom 𝐹𝐵) = (𝐵 ∩ dom 𝐹)
3 fndm 6592 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 3963 . . . . . 6 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 dfss2 3916 . . . . 5 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
75, 6sylib 218 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵)
82, 7eqtrid 2780 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (dom 𝐹𝐵) = 𝐵)
98eqeq1d 2735 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((dom 𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
101, 9bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  cin 3897  wss 3898  c0 4282  dom cdm 5621  cima 5624   Fn wfn 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fn 6492
This theorem is referenced by:  ipodrsima  18455  mdegldg  26018  ig1peu  26127  ig1pdvds  26132  dimval  33685  dimvalfi  33686  nummin  35176  aks6d1c6lem3  42338  kelac1  43220
  Copyright terms: Public domain W3C validator