MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimaeq0 Structured version   Visualization version   GIF version

Theorem fnimaeq0 6654
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 43047. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 6054 . 2 ((𝐹𝐵) = ∅ ↔ (dom 𝐹𝐵) = ∅)
2 incom 4175 . . . 4 (dom 𝐹𝐵) = (𝐵 ∩ dom 𝐹)
3 fndm 6624 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 3982 . . . . . 6 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 dfss2 3935 . . . . 5 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
75, 6sylib 218 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵)
82, 7eqtrid 2777 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (dom 𝐹𝐵) = 𝐵)
98eqeq1d 2732 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((dom 𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
101, 9bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cin 3916  wss 3917  c0 4299  dom cdm 5641  cima 5644   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fn 6517
This theorem is referenced by:  ipodrsima  18507  mdegldg  25978  ig1peu  26087  ig1pdvds  26092  dimval  33603  dimvalfi  33604  nummin  35088  aks6d1c6lem3  42167  kelac1  43059
  Copyright terms: Public domain W3C validator