![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnimaeq0 | Structured version Visualization version GIF version |
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 42371. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
fnimaeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisj 6073 | . 2 ⊢ ((𝐹 “ 𝐵) = ∅ ↔ (dom 𝐹 ∩ 𝐵) = ∅) | |
2 | incom 4196 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) = (𝐵 ∩ dom 𝐹) | |
3 | fndm 6646 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 4009 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 477 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | df-ss 3960 | . . . . 5 ⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵) |
8 | 2, 7 | eqtrid 2778 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ 𝐵) = 𝐵) |
9 | 8 | eqeq1d 2728 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((dom 𝐹 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 1, 9 | bitrid 283 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 dom cdm 5669 “ cima 5672 Fn wfn 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fn 6540 |
This theorem is referenced by: ipodrsima 18506 mdegldg 25957 ig1peu 26064 ig1pdvds 26069 dimval 33203 dimvalfi 33204 nummin 34623 kelac1 42383 |
Copyright terms: Public domain | W3C validator |