MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimaeq0 Structured version   Visualization version   GIF version

Theorem fnimaeq0 6693
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 42524. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 6088 . 2 ((𝐹𝐵) = ∅ ↔ (dom 𝐹𝐵) = ∅)
2 incom 4203 . . . 4 (dom 𝐹𝐵) = (𝐵 ∩ dom 𝐹)
3 fndm 6662 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 4014 . . . . . 6 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 476 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 df-ss 3966 . . . . 5 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
75, 6sylib 217 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵)
82, 7eqtrid 2780 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (dom 𝐹𝐵) = 𝐵)
98eqeq1d 2730 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((dom 𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
101, 9bitrid 282 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  cin 3948  wss 3949  c0 4326  dom cdm 5682  cima 5685   Fn wfn 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fn 6556
This theorem is referenced by:  ipodrsima  18542  mdegldg  26030  ig1peu  26137  ig1pdvds  26142  dimval  33339  dimvalfi  33340  nummin  34755  aks6d1c6lem3  41684  kelac1  42536
  Copyright terms: Public domain W3C validator