MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fn0 Structured version   Visualization version   GIF version

Theorem fn0 6564
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 6535 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 6536 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 5837 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 478 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 584 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 6499 . . . 4 Fun ∅
7 dm0 5829 . . . 4 dom ∅ = ∅
8 df-fn 6436 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 708 . . 3 ∅ Fn ∅
10 fneq1 6524 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 257 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 208 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  c0 4256  dom cdm 5589  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436
This theorem is referenced by:  mpt0  6575  f0  6655  f00  6656  f0bi  6657  f1o00  6751  fo00  6752  tpos0  8072  ixp0x  8714  0fz1  13276  hashf1  14171  fuchom  17678  fuchomOLD  17679  grpinvfvi  18622  mulgfval  18702  mulgfvalALT  18703  mulgfvi  18706  0frgp  19385  invrfval  19915  psrvscafval  21159  tmdgsum  23246  deg1fvi  25250  hon0  30155  fnchoice  42572  dvnprodlem3  43489
  Copyright terms: Public domain W3C validator