MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fn0 Structured version   Visualization version   GIF version

Theorem fn0 6699
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 6670 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 6671 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 5940 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 477 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 584 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 6632 . . . 4 Fun ∅
7 dm0 5933 . . . 4 dom ∅ = ∅
8 df-fn 6565 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 711 . . 3 ∅ Fn ∅
10 fneq1 6659 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 258 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 209 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1536  c0 4338  dom cdm 5688  Rel wrel 5693  Fun wfun 6556   Fn wfn 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-mo 2537  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-fun 6564  df-fn 6565
This theorem is referenced by:  mpt0  6710  f0  6789  f00  6790  f0bi  6791  f1o00  6883  fo00  6884  tpos0  8279  ixp0x  8964  0fz1  13580  hashf1  14492  fuchom  18016  fuchomOLD  18017  grpinvfvi  19012  mulgfval  19099  mulgfvalALT  19100  mulgfvi  19103  0frgp  19811  invrfval  20405  psrvscafval  21985  tmdgsum  24118  deg1fvi  26138  hon0  31821  fnchoice  44966  dvnprodlem3  45903
  Copyright terms: Public domain W3C validator