| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fn0 | Structured version Visualization version GIF version | ||
| Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6588 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
| 2 | fndm 6589 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
| 3 | reldm0 5872 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
| 4 | 3 | biimpar 477 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
| 5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
| 6 | fun0 6551 | . . . 4 ⊢ Fun ∅ | |
| 7 | dm0 5864 | . . . 4 ⊢ dom ∅ = ∅ | |
| 8 | df-fn 6489 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
| 9 | 6, 7, 8 | mpbir2an 711 | . . 3 ⊢ ∅ Fn ∅ |
| 10 | fneq1 6577 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
| 11 | 9, 10 | mpbiri 258 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
| 12 | 5, 11 | impbii 209 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∅c0 4282 dom cdm 5619 Rel wrel 5624 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: mpt0 6628 f0 6709 f00 6710 f0bi 6711 f1o00 6803 fo00 6804 tpos0 8192 ixp0x 8856 0fz1 13446 hashf1 14366 fuchom 17873 grpinvfvi 18897 mulgfval 18984 mulgfvalALT 18985 mulgfvi 18988 0frgp 19693 invrfval 20309 psrvscafval 21887 tmdgsum 24011 deg1fvi 26018 hon0 31775 fconst7v 32605 fnchoice 45150 dvnprodlem3 46070 0funcg2 49209 0funcALT 49213 0fucterm 49668 |
| Copyright terms: Public domain | W3C validator |