Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fn0 | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6535 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
2 | fndm 6536 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
3 | reldm0 5837 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
4 | 3 | biimpar 478 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
6 | fun0 6499 | . . . 4 ⊢ Fun ∅ | |
7 | dm0 5829 | . . . 4 ⊢ dom ∅ = ∅ | |
8 | df-fn 6436 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
9 | 6, 7, 8 | mpbir2an 708 | . . 3 ⊢ ∅ Fn ∅ |
10 | fneq1 6524 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
11 | 9, 10 | mpbiri 257 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
12 | 5, 11 | impbii 208 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∅c0 4256 dom cdm 5589 Rel wrel 5594 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 |
This theorem is referenced by: mpt0 6575 f0 6655 f00 6656 f0bi 6657 f1o00 6751 fo00 6752 tpos0 8072 ixp0x 8714 0fz1 13276 hashf1 14171 fuchom 17678 fuchomOLD 17679 grpinvfvi 18622 mulgfval 18702 mulgfvalALT 18703 mulgfvi 18706 0frgp 19385 invrfval 19915 psrvscafval 21159 tmdgsum 23246 deg1fvi 25250 hon0 30155 fnchoice 42572 dvnprodlem3 43489 |
Copyright terms: Public domain | W3C validator |