| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fn0 | Structured version Visualization version GIF version | ||
| Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6640 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
| 2 | fndm 6641 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
| 3 | reldm0 5907 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
| 4 | 3 | biimpar 477 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
| 5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
| 6 | fun0 6601 | . . . 4 ⊢ Fun ∅ | |
| 7 | dm0 5900 | . . . 4 ⊢ dom ∅ = ∅ | |
| 8 | df-fn 6534 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
| 9 | 6, 7, 8 | mpbir2an 711 | . . 3 ⊢ ∅ Fn ∅ |
| 10 | fneq1 6629 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
| 11 | 9, 10 | mpbiri 258 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
| 12 | 5, 11 | impbii 209 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4308 dom cdm 5654 Rel wrel 5659 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: mpt0 6680 f0 6759 f00 6760 f0bi 6761 f1o00 6853 fo00 6854 tpos0 8255 ixp0x 8940 0fz1 13561 hashf1 14475 fuchom 17977 grpinvfvi 18965 mulgfval 19052 mulgfvalALT 19053 mulgfvi 19056 0frgp 19760 invrfval 20349 psrvscafval 21908 tmdgsum 24033 deg1fvi 26042 hon0 31774 fnchoice 45053 dvnprodlem3 45977 0funcg2 49049 0funcALT 49053 |
| Copyright terms: Public domain | W3C validator |