![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fn0 | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6287 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
2 | fndm 6288 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
3 | reldm0 5641 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
4 | 3 | biimpar 470 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
5 | 1, 2, 4 | syl2anc 576 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
6 | fun0 6252 | . . . 4 ⊢ Fun ∅ | |
7 | dm0 5637 | . . . 4 ⊢ dom ∅ = ∅ | |
8 | df-fn 6191 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
9 | 6, 7, 8 | mpbir2an 698 | . . 3 ⊢ ∅ Fn ∅ |
10 | fneq1 6277 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
11 | 9, 10 | mpbiri 250 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
12 | 5, 11 | impbii 201 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1507 ∅c0 4179 dom cdm 5407 Rel wrel 5412 Fun wfun 6182 Fn wfn 6183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-fun 6190 df-fn 6191 |
This theorem is referenced by: mpt0 6320 f0 6389 f00 6390 f0bi 6391 f1o00 6478 fo00 6479 tpos0 7725 ixp0x 8287 0fz1 12743 hashf1 13628 fuchom 17089 grpinvfvi 17933 mulgfval 18013 mulgfvalALT 18014 mulgfvi 18017 symgplusg 18278 0frgp 18665 invrfval 19146 psrvscafval 19884 tmdgsum 22407 deg1fvi 24382 hon0 29351 fnchoice 40702 dvnprodlem3 41661 |
Copyright terms: Public domain | W3C validator |