MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresin1 Structured version   Visualization version   GIF version

Theorem fnresin1 6676
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin1 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))

Proof of Theorem fnresin1
StepHypRef Expression
1 inss1 4229 . 2 (𝐴𝐵) ⊆ 𝐴
2 fnssres 6674 . 2 ((𝐹 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
31, 2mpan2 690 1 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3948  wss 3949  cres 5679   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-fun 6546  df-fn 6547
This theorem is referenced by:  frrlem4  8274  wfrlem4OLD  8312  fnresin  31850
  Copyright terms: Public domain W3C validator