![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresin1 | Structured version Visualization version GIF version |
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
fnresin1 | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | fnssres 6703 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3975 ⊆ wss 3976 ↾ cres 5702 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: frrlem4 8330 wfrlem4OLD 8368 fnresin 32645 |
Copyright terms: Public domain | W3C validator |