MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresin2 Structured version   Visualization version   GIF version

Theorem fnresin2 6558
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))

Proof of Theorem fnresin2
StepHypRef Expression
1 inss2 4163 . 2 (𝐵𝐴) ⊆ 𝐴
2 fnssres 6555 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
31, 2mpan2 688 1 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3886  wss 3887  cres 5591   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-fun 6435  df-fn 6436
This theorem is referenced by:  resfnfinfin  9099  resfifsupp  9156  hashresfn  14054
  Copyright terms: Public domain W3C validator