![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresin2 | Structured version Visualization version GIF version |
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
fnresin2 | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4246 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
2 | fnssres 6692 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ∩ 𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3962 ⊆ wss 3963 ↾ cres 5691 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-fun 6565 df-fn 6566 |
This theorem is referenced by: resfnfinfin 9375 resfifsupp 9435 hashresfn 14376 |
Copyright terms: Public domain | W3C validator |