MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresd Structured version   Visualization version   GIF version

Theorem fnssresd 6675
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fnssresd.1 (𝜑𝐹 Fn 𝐴)
fnssresd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnssresd (𝜑 → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssresd
StepHypRef Expression
1 fnssresd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnssresd.2 . 2 (𝜑𝐵𝐴)
3 fnssres 6674 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
41, 2, 3syl2anc 585 1 (𝜑 → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3949  cres 5679   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-fun 6546  df-fn 6547
This theorem is referenced by:  rescnvimafod  7076  fpwwe2lem7  10632  pfxccat1  14652  mdetrsca  22105  2ndresdju  31874  fdifsuppconst  31911  ply1gsumz  32669  subfacp1lem3  34173  satfn  34346  eqresfnbd  41054  tfsconcatrev  42098  ofoafg  42104  xlimconst2  44551  fcoreslem4  45776
  Copyright terms: Public domain W3C validator