![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnssresd | Structured version Visualization version GIF version |
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fnssresd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnssresd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
fnssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnssresd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | fnssres 6703 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ↾ cres 5702 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: rescnvimafod 7107 fssrescdmd 7160 fpwwe2lem7 10706 pfxccat1 14750 mdetrsca 22630 2ndresdju 32667 fdifsuppconst 32701 ply1gsumz 33584 dimkerim 33640 rmulccn 33874 subfacp1lem3 35150 satfn 35323 eqresfnbd 42227 tfsconcatrev 43310 ofoafg 43316 xlimconst2 45756 fcoreslem4 46981 |
Copyright terms: Public domain | W3C validator |