| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssresd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fnssresd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnssresd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fnssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnssresd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | fnssres 6609 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ↾ cres 5625 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: rescnvimafod 7011 fssrescdmd 7064 fpwwe2lem7 10550 pfxccat1 14626 mdetrsca 22506 2ndresdju 32606 fdifsupp 32641 fdifsuppconst 32645 ply1gsumz 33543 dimkerim 33602 rmulccn 33897 subfacp1lem3 35157 satfn 35330 eqresfnbd 42208 tfsconcatrev 43324 ofoafg 43330 xlimconst2 45820 dvnprodlem1 45931 fcoreslem4 47054 isubgredg 47854 |
| Copyright terms: Public domain | W3C validator |