| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssresd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fnssresd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnssresd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fnssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnssresd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | fnssres 6599 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 ↾ cres 5613 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-fun 6478 df-fn 6479 |
| This theorem is referenced by: rescnvimafod 7001 fssrescdmd 7054 fpwwe2lem7 10523 pfxccat1 14604 mdetrsca 22513 2ndresdju 32623 fdifsupp 32658 fdifsuppconst 32662 ply1gsumz 33551 dimkerim 33632 rmulccn 33933 subfacp1lem3 35218 satfn 35391 eqresfnbd 42265 tfsconcatrev 43381 ofoafg 43387 xlimconst2 45873 dvnprodlem1 45984 fcoreslem4 47097 isubgredg 47897 |
| Copyright terms: Public domain | W3C validator |