| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssresd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fnssresd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnssresd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fnssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnssresd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | fnssres 6644 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ↾ cres 5643 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: rescnvimafod 7048 fssrescdmd 7101 fpwwe2lem7 10597 pfxccat1 14674 mdetrsca 22497 2ndresdju 32580 fdifsupp 32615 fdifsuppconst 32619 ply1gsumz 33571 dimkerim 33630 rmulccn 33925 subfacp1lem3 35176 satfn 35349 eqresfnbd 42227 tfsconcatrev 43344 ofoafg 43350 xlimconst2 45840 dvnprodlem1 45951 fcoreslem4 47071 isubgredg 47870 |
| Copyright terms: Public domain | W3C validator |