MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresd Structured version   Visualization version   GIF version

Theorem fnssresd 6684
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fnssresd.1 (𝜑𝐹 Fn 𝐴)
fnssresd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnssresd (𝜑 → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssresd
StepHypRef Expression
1 fnssresd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnssresd.2 . 2 (𝜑𝐵𝐴)
3 fnssres 6683 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3949  cres 5684   Fn wfn 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-fun 6555  df-fn 6556
This theorem is referenced by:  rescnvimafod  7088  fssrescdmd  7141  fpwwe2lem7  10670  pfxccat1  14694  mdetrsca  22533  2ndresdju  32464  fdifsuppconst  32498  ply1gsumz  33310  dimkerim  33366  rmulccn  33570  subfacp1lem3  34833  satfn  35006  eqresfnbd  41763  tfsconcatrev  42826  ofoafg  42832  xlimconst2  45270  fcoreslem4  46495
  Copyright terms: Public domain W3C validator