MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresd Structured version   Visualization version   GIF version

Theorem fnssresd 6645
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fnssresd.1 (𝜑𝐹 Fn 𝐴)
fnssresd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnssresd (𝜑 → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssresd
StepHypRef Expression
1 fnssresd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnssresd.2 . 2 (𝜑𝐵𝐴)
3 fnssres 6644 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3917  cres 5643   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-fun 6516  df-fn 6517
This theorem is referenced by:  rescnvimafod  7048  fssrescdmd  7101  fpwwe2lem7  10597  pfxccat1  14674  mdetrsca  22497  2ndresdju  32580  fdifsupp  32615  fdifsuppconst  32619  ply1gsumz  33571  dimkerim  33630  rmulccn  33925  subfacp1lem3  35176  satfn  35349  eqresfnbd  42227  tfsconcatrev  43344  ofoafg  43350  xlimconst2  45840  dvnprodlem1  45951  fcoreslem4  47071  isubgredg  47870
  Copyright terms: Public domain W3C validator