Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresin | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
fnresin | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresin1 6460 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) | |
2 | resindi 5844 | . . . 4 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) | |
3 | fnresdm 6454 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
4 | 3 | ineq1d 4118 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ∩ (𝐹 ↾ 𝐵))) |
5 | incom 4108 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹 ↾ 𝐵)) | |
6 | resss 5853 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐵) ⊆ 𝐹 | |
7 | df-ss 3877 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵) ⊆ 𝐹 ↔ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵)) | |
8 | 6, 7 | mpbi 233 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵) |
9 | 5, 8 | eqtr3i 2783 | . . . . 5 ⊢ (𝐹 ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵) |
10 | 4, 9 | eqtrdi 2809 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵)) |
11 | 2, 10 | syl5eq 2805 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
12 | 11 | fneq1d 6432 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵) ↔ (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵))) |
13 | 1, 12 | mpbid 235 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∩ cin 3859 ⊆ wss 3860 ↾ cres 5530 Fn wfn 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-res 5540 df-fun 6342 df-fn 6343 |
This theorem is referenced by: fsuppcurry1 30596 fsuppcurry2 30597 signstres 32085 |
Copyright terms: Public domain | W3C validator |