| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresin | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| fnresin | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresin1 6643 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) | |
| 2 | resindi 5966 | . . . 4 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) | |
| 3 | fnresdm 6637 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 4 | 3 | ineq1d 4182 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ∩ (𝐹 ↾ 𝐵))) |
| 5 | incom 4172 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹 ↾ 𝐵)) | |
| 6 | resss 5972 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐵) ⊆ 𝐹 | |
| 7 | dfss2 3932 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵) ⊆ 𝐹 ↔ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵)) | |
| 8 | 6, 7 | mpbi 230 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵) |
| 9 | 5, 8 | eqtr3i 2754 | . . . . 5 ⊢ (𝐹 ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵) |
| 10 | 4, 9 | eqtrdi 2780 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 11 | 2, 10 | eqtrid 2776 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 12 | 11 | fneq1d 6611 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵) ↔ (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵))) |
| 13 | 1, 12 | mpbid 232 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ↾ cres 5640 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fsuppcurry1 32648 fsuppcurry2 32649 signstres 34566 |
| Copyright terms: Public domain | W3C validator |