Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresin Structured version   Visualization version   GIF version

Theorem fnresin 32628
Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
fnresin (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))

Proof of Theorem fnresin
StepHypRef Expression
1 fnresin1 6614 . 2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
2 resindi 5951 . . . 4 (𝐹 ↾ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵))
3 fnresdm 6608 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
43ineq1d 4168 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹 ∩ (𝐹𝐵)))
5 incom 4158 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹𝐵))
6 resss 5957 . . . . . . 7 (𝐹𝐵) ⊆ 𝐹
7 dfss2 3916 . . . . . . 7 ((𝐹𝐵) ⊆ 𝐹 ↔ ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵))
86, 7mpbi 230 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵)
95, 8eqtr3i 2758 . . . . 5 (𝐹 ∩ (𝐹𝐵)) = (𝐹𝐵)
104, 9eqtrdi 2784 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐵))
112, 10eqtrid 2780 . . 3 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1211fneq1d 6582 . 2 (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ↔ (𝐹𝐵) Fn (𝐴𝐵)))
131, 12mpbid 232 1 (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3897  wss 3898  cres 5623   Fn wfn 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-fun 6491  df-fn 6492
This theorem is referenced by:  fsuppcurry1  32731  fsuppcurry2  32732  signstres  34660
  Copyright terms: Public domain W3C validator