Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresin Structured version   Visualization version   GIF version

Theorem fnresin 30496
 Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
fnresin (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))

Proof of Theorem fnresin
StepHypRef Expression
1 fnresin1 6460 . 2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
2 resindi 5844 . . . 4 (𝐹 ↾ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵))
3 fnresdm 6454 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
43ineq1d 4118 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹 ∩ (𝐹𝐵)))
5 incom 4108 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹𝐵))
6 resss 5853 . . . . . . 7 (𝐹𝐵) ⊆ 𝐹
7 df-ss 3877 . . . . . . 7 ((𝐹𝐵) ⊆ 𝐹 ↔ ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵))
86, 7mpbi 233 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵)
95, 8eqtr3i 2783 . . . . 5 (𝐹 ∩ (𝐹𝐵)) = (𝐹𝐵)
104, 9eqtrdi 2809 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐵))
112, 10syl5eq 2805 . . 3 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1211fneq1d 6432 . 2 (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ↔ (𝐹𝐵) Fn (𝐴𝐵)))
131, 12mpbid 235 1 (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∩ cin 3859   ⊆ wss 3860   ↾ cres 5530   Fn wfn 6335 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-fun 6342  df-fn 6343 This theorem is referenced by:  fsuppcurry1  30596  fsuppcurry2  30597  signstres  32085
 Copyright terms: Public domain W3C validator