Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresin Structured version   Visualization version   GIF version

Theorem fnresin 31837
Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
fnresin (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))

Proof of Theorem fnresin
StepHypRef Expression
1 fnresin1 6672 . 2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
2 resindi 5995 . . . 4 (𝐹 ↾ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵))
3 fnresdm 6666 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
43ineq1d 4210 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹 ∩ (𝐹𝐵)))
5 incom 4200 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹𝐵))
6 resss 6004 . . . . . . 7 (𝐹𝐵) ⊆ 𝐹
7 df-ss 3964 . . . . . . 7 ((𝐹𝐵) ⊆ 𝐹 ↔ ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵))
86, 7mpbi 229 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵)
95, 8eqtr3i 2762 . . . . 5 (𝐹 ∩ (𝐹𝐵)) = (𝐹𝐵)
104, 9eqtrdi 2788 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐵))
112, 10eqtrid 2784 . . 3 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1211fneq1d 6639 . 2 (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ↔ (𝐹𝐵) Fn (𝐴𝐵)))
131, 12mpbid 231 1 (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3946  wss 3947  cres 5677   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-fun 6542  df-fn 6543
This theorem is referenced by:  fsuppcurry1  31937  fsuppcurry2  31938  signstres  33574
  Copyright terms: Public domain W3C validator