![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresin | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
fnresin | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresin1 6665 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) | |
2 | resindi 5987 | . . . 4 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) | |
3 | fnresdm 6659 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
4 | 3 | ineq1d 4203 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ∩ (𝐹 ↾ 𝐵))) |
5 | incom 4193 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹 ↾ 𝐵)) | |
6 | resss 5996 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐵) ⊆ 𝐹 | |
7 | df-ss 3957 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵) ⊆ 𝐹 ↔ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵)) | |
8 | 6, 7 | mpbi 229 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐵) ∩ 𝐹) = (𝐹 ↾ 𝐵) |
9 | 5, 8 | eqtr3i 2754 | . . . . 5 ⊢ (𝐹 ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵) |
10 | 4, 9 | eqtrdi 2780 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ (𝐹 ↾ 𝐵)) = (𝐹 ↾ 𝐵)) |
11 | 2, 10 | eqtrid 2776 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
12 | 11 | fneq1d 6632 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵) ↔ (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵))) |
13 | 1, 12 | mpbid 231 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∩ cin 3939 ⊆ wss 3940 ↾ cres 5668 Fn wfn 6528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-res 5678 df-fun 6535 df-fn 6536 |
This theorem is referenced by: fsuppcurry1 32374 fsuppcurry2 32375 signstres 34041 |
Copyright terms: Public domain | W3C validator |