Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresin Structured version   Visualization version   GIF version

Theorem fnresin 32599
Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
fnresin (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))

Proof of Theorem fnresin
StepHypRef Expression
1 fnresin1 6601 . 2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
2 resindi 5939 . . . 4 (𝐹 ↾ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵))
3 fnresdm 6595 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
43ineq1d 4164 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹 ∩ (𝐹𝐵)))
5 incom 4154 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹 ∩ (𝐹𝐵))
6 resss 5945 . . . . . . 7 (𝐹𝐵) ⊆ 𝐹
7 dfss2 3915 . . . . . . 7 ((𝐹𝐵) ⊆ 𝐹 ↔ ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵))
86, 7mpbi 230 . . . . . 6 ((𝐹𝐵) ∩ 𝐹) = (𝐹𝐵)
95, 8eqtr3i 2756 . . . . 5 (𝐹 ∩ (𝐹𝐵)) = (𝐹𝐵)
104, 9eqtrdi 2782 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐵))
112, 10eqtrid 2778 . . 3 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1211fneq1d 6569 . 2 (𝐹 Fn 𝐴 → ((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ↔ (𝐹𝐵) Fn (𝐴𝐵)))
131, 12mpbid 232 1 (𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  wss 3897  cres 5613   Fn wfn 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-fun 6478  df-fn 6479
This theorem is referenced by:  fsuppcurry1  32699  fsuppcurry2  32700  signstres  34580
  Copyright terms: Public domain W3C validator