Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 6563 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 478 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3888 ↾ cres 5592 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-res 5602 df-fun 6439 df-fn 6440 |
This theorem is referenced by: fnssresd 6565 fnresin1 6566 fnresin2 6567 fnresi 6570 fssres 6649 fvreseq0 6924 fnreseql 6934 ffvresb 7007 fnressn 7039 soisores 7207 oprres 7449 ofres 7561 fsplitfpar 7968 fnsuppres 8016 tfrlem1 8216 tz7.48lem 8281 tz7.49c 8286 resixp 8730 ixpfi2 9126 ttrclss 9487 dfac12lem1 9908 ackbij2lem3 10006 cfsmolem 10035 alephsing 10041 ttukeylem3 10276 iunfo 10304 fpwwe2lem7 10402 mulnzcnopr 11630 seqfeq2 13755 seqf1olem2 13772 bpolylem 15767 reeff1 15838 sscres 17544 fullsubc 17574 fullresc 17575 funcres2c 17626 dmaf 17773 cdaf 17774 frmdplusg 18502 frmdss2 18511 gass 18916 dprdfadd 19632 mgpf 19807 prdscrngd 19861 subrgascl 21283 mdetrsca 21761 upxp 22783 uptx 22785 cnmpt1st 22828 cnmpt2nd 22829 cnextfres1 23228 prdstmdd 23284 ressprdsds 23533 prdsxmslem2 23694 xrsdsre 23982 itg1addlem4OLD 24873 recosf1o 25700 resinf1o 25701 dvdsmulf1o 26352 ex-fpar 28835 sspg 29099 ssps 29101 sspmlem 29103 sspn 29107 hhssnv 29635 ressupprn 31033 1stpreimas 31047 dimkerim 31717 cnre2csqlem 31869 rmulccn 31887 raddcn 31888 carsggect 32294 subiwrdlen 32362 signsvtn0 32558 signstres 32563 bnj1253 33006 bnj1280 33009 subfacp1lem5 33155 cvmlift2lem9a 33274 filnetlem4 34579 finixpnum 35771 poimirlem4 35790 poimirlem8 35794 ftc1anclem3 35861 isdrngo2 36125 diaintclN 39079 dibintclN 39188 dihintcl 39365 imaiinfv 40522 fnwe2lem2 40883 aomclem6 40891 deg1mhm 41039 limsupvaluz2 43286 supcnvlimsup 43288 limsupgtlem 43325 resincncf 43423 icccncfext 43435 dvnprodlem1 43494 fourierdlem42 43697 fourierdlem73 43727 rnghmresfn 45532 rnghmsscmap2 45542 rnghmsscmap 45543 rhmresfn 45578 rhmsscmap2 45588 rhmsscmap 45589 fdivmpt 45897 |
Copyright terms: Public domain | W3C validator |