| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6608 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 ↾ cres 5621 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fnssresd 6610 fnresin1 6611 fnresin2 6612 fnresi 6615 fssres 6694 fvreseq0 6977 fnreseql 6987 ffvresb 7064 fnressn 7097 soisores 7267 oprres 7520 ofres 7635 fsplitfpar 8054 fnsuppres 8127 tfrlem1 8301 tz7.48lem 8366 tz7.49c 8371 resixp 8863 ixpfi2 9241 ttrclss 9617 dfac12lem1 10042 ackbij2lem3 10138 cfsmolem 10168 alephsing 10174 ttukeylem3 10409 iunfo 10437 fpwwe2lem7 10535 mulnzcnf 11770 seqfeq2 13934 seqf1olem2 13951 bpolylem 15957 reeff1 16031 sscres 17732 fullsubc 17759 fullresc 17760 funcres2c 17812 dmaf 17958 cdaf 17959 frmdplusg 18764 frmdss2 18773 gass 19215 dprdfadd 19936 rngmgpf 20077 mgpf 20168 prdscrngd 20242 rnghmresfn 20536 rnghmsscmap2 20546 rnghmsscmap 20547 rhmresfn 20565 rhmsscmap2 20575 rhmsscmap 20576 subrgascl 22002 upxp 23539 uptx 23541 cnmpt1st 23584 cnmpt2nd 23585 cnextfres1 23984 prdstmdd 24040 ressprdsds 24287 prdsxmslem2 24445 xrsdsre 24727 recosf1o 26472 resinf1o 26473 mpodvdsmulf1o 27132 dvdsmulf1o 27134 ex-fpar 30444 sspg 30710 ssps 30712 sspmlem 30714 sspn 30718 hhssnv 31246 ressupprn 32675 1stpreimas 32691 cnre2csqlem 33944 raddcn 33963 carsggect 34352 subiwrdlen 34420 signsvtn0 34604 signstres 34609 bnj1253 35050 bnj1280 35053 gblacfnacd 35167 subfacp1lem5 35249 cvmlift2lem9a 35368 filnetlem4 36446 finixpnum 37666 poimirlem4 37685 poimirlem8 37689 ftc1anclem3 37756 isdrngo2 38019 diaintclN 41178 dibintclN 41287 dihintcl 41464 imaiinfv 42811 fnwe2lem2 43169 aomclem6 43177 deg1mhm 43318 limsupvaluz2 45861 supcnvlimsup 45863 limsupgtlem 45900 resincncf 45998 icccncfext 46010 fourierdlem42 46272 fourierdlem73 46302 fdivmpt 48666 slotresfo 49024 basresposfo 49103 oppff1 49274 |
| Copyright terms: Public domain | W3C validator |