| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6640 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 ↾ cres 5640 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnssresd 6642 fnresin1 6643 fnresin2 6644 fnresi 6647 fssres 6726 fvreseq0 7010 fnreseql 7020 ffvresb 7097 fnressn 7130 soisores 7302 oprres 7557 ofres 7672 fsplitfpar 8097 fnsuppres 8170 tfrlem1 8344 tz7.48lem 8409 tz7.49c 8414 resixp 8906 ixpfi2 9301 ttrclss 9673 dfac12lem1 10097 ackbij2lem3 10193 cfsmolem 10223 alephsing 10229 ttukeylem3 10464 iunfo 10492 fpwwe2lem7 10590 mulnzcnf 11824 seqfeq2 13990 seqf1olem2 14007 bpolylem 16014 reeff1 16088 sscres 17785 fullsubc 17812 fullresc 17813 funcres2c 17865 dmaf 18011 cdaf 18012 frmdplusg 18781 frmdss2 18790 gass 19233 dprdfadd 19952 rngmgpf 20066 mgpf 20157 prdscrngd 20231 rnghmresfn 20528 rnghmsscmap2 20538 rnghmsscmap 20539 rhmresfn 20557 rhmsscmap2 20567 rhmsscmap 20568 subrgascl 21973 upxp 23510 uptx 23512 cnmpt1st 23555 cnmpt2nd 23556 cnextfres1 23955 prdstmdd 24011 ressprdsds 24259 prdsxmslem2 24417 xrsdsre 24699 recosf1o 26444 resinf1o 26445 mpodvdsmulf1o 27104 dvdsmulf1o 27106 ex-fpar 30391 sspg 30657 ssps 30659 sspmlem 30661 sspn 30665 hhssnv 31193 ressupprn 32613 1stpreimas 32629 cnre2csqlem 33900 raddcn 33919 carsggect 34309 subiwrdlen 34377 signsvtn0 34561 signstres 34566 bnj1253 35007 bnj1280 35010 gblacfnacd 35089 subfacp1lem5 35171 cvmlift2lem9a 35290 filnetlem4 36369 finixpnum 37599 poimirlem4 37618 poimirlem8 37622 ftc1anclem3 37689 isdrngo2 37952 diaintclN 41052 dibintclN 41161 dihintcl 41338 imaiinfv 42681 fnwe2lem2 43040 aomclem6 43048 deg1mhm 43189 limsupvaluz2 45736 supcnvlimsup 45738 limsupgtlem 45775 resincncf 45873 icccncfext 45885 fourierdlem42 46147 fourierdlem73 46177 fdivmpt 48529 slotresfo 48887 basresposfo 48966 oppff1 49137 |
| Copyright terms: Public domain | W3C validator |