![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 6690 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3962 ↾ cres 5690 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-res 5700 df-fun 6564 df-fn 6565 |
This theorem is referenced by: fnssresd 6692 fnresin1 6693 fnresin2 6694 fnresi 6697 fssres 6774 fvreseq0 7057 fnreseql 7067 ffvresb 7144 fnressn 7177 soisores 7346 oprres 7600 ofres 7715 fsplitfpar 8141 fnsuppres 8214 tfrlem1 8414 tz7.48lem 8479 tz7.49c 8484 resixp 8971 ixpfi2 9387 ttrclss 9757 dfac12lem1 10181 ackbij2lem3 10277 cfsmolem 10307 alephsing 10313 ttukeylem3 10548 iunfo 10576 fpwwe2lem7 10674 mulnzcnf 11906 seqfeq2 14062 seqf1olem2 14079 bpolylem 16080 reeff1 16152 sscres 17870 fullsubc 17900 fullresc 17901 funcres2c 17954 dmaf 18102 cdaf 18103 frmdplusg 18879 frmdss2 18888 gass 19331 dprdfadd 20054 rngmgpf 20174 mgpf 20265 prdscrngd 20335 rnghmresfn 20635 rnghmsscmap2 20645 rnghmsscmap 20646 rhmresfn 20664 rhmsscmap2 20674 rhmsscmap 20675 subrgascl 22107 upxp 23646 uptx 23648 cnmpt1st 23691 cnmpt2nd 23692 cnextfres1 24091 prdstmdd 24147 ressprdsds 24396 prdsxmslem2 24557 xrsdsre 24845 itg1addlem4OLD 25748 recosf1o 26591 resinf1o 26592 mpodvdsmulf1o 27251 dvdsmulf1o 27253 ex-fpar 30490 sspg 30756 ssps 30758 sspmlem 30760 sspn 30764 hhssnv 31292 ressupprn 32704 1stpreimas 32720 cnre2csqlem 33870 raddcn 33889 carsggect 34299 subiwrdlen 34367 signsvtn0 34563 signstres 34568 bnj1253 35009 bnj1280 35012 gblacfnacd 35091 subfacp1lem5 35168 cvmlift2lem9a 35287 filnetlem4 36363 finixpnum 37591 poimirlem4 37610 poimirlem8 37614 ftc1anclem3 37681 isdrngo2 37944 diaintclN 41040 dibintclN 41149 dihintcl 41326 imaiinfv 42680 fnwe2lem2 43039 aomclem6 43047 deg1mhm 43188 limsupvaluz2 45693 supcnvlimsup 45695 limsupgtlem 45732 resincncf 45830 icccncfext 45842 fourierdlem42 46104 fourierdlem73 46134 fdivmpt 48389 |
Copyright terms: Public domain | W3C validator |