| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6608 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 ↾ cres 5625 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fnssresd 6610 fnresin1 6611 fnresin2 6612 fnresi 6615 fssres 6694 fvreseq0 6976 fnreseql 6986 ffvresb 7063 fnressn 7096 soisores 7268 oprres 7521 ofres 7636 fsplitfpar 8058 fnsuppres 8131 tfrlem1 8305 tz7.48lem 8370 tz7.49c 8375 resixp 8867 ixpfi2 9259 ttrclss 9635 dfac12lem1 10057 ackbij2lem3 10153 cfsmolem 10183 alephsing 10189 ttukeylem3 10424 iunfo 10452 fpwwe2lem7 10550 mulnzcnf 11784 seqfeq2 13950 seqf1olem2 13967 bpolylem 15973 reeff1 16047 sscres 17748 fullsubc 17775 fullresc 17776 funcres2c 17828 dmaf 17974 cdaf 17975 frmdplusg 18746 frmdss2 18755 gass 19198 dprdfadd 19919 rngmgpf 20060 mgpf 20151 prdscrngd 20225 rnghmresfn 20522 rnghmsscmap2 20532 rnghmsscmap 20533 rhmresfn 20551 rhmsscmap2 20561 rhmsscmap 20562 subrgascl 21989 upxp 23526 uptx 23528 cnmpt1st 23571 cnmpt2nd 23572 cnextfres1 23971 prdstmdd 24027 ressprdsds 24275 prdsxmslem2 24433 xrsdsre 24715 recosf1o 26460 resinf1o 26461 mpodvdsmulf1o 27120 dvdsmulf1o 27122 ex-fpar 30424 sspg 30690 ssps 30692 sspmlem 30694 sspn 30698 hhssnv 31226 ressupprn 32646 1stpreimas 32662 cnre2csqlem 33879 raddcn 33898 carsggect 34288 subiwrdlen 34356 signsvtn0 34540 signstres 34545 bnj1253 34986 bnj1280 34989 gblacfnacd 35077 subfacp1lem5 35159 cvmlift2lem9a 35278 filnetlem4 36357 finixpnum 37587 poimirlem4 37606 poimirlem8 37610 ftc1anclem3 37677 isdrngo2 37940 diaintclN 41040 dibintclN 41149 dihintcl 41326 imaiinfv 42669 fnwe2lem2 43027 aomclem6 43035 deg1mhm 43176 limsupvaluz2 45723 supcnvlimsup 45725 limsupgtlem 45762 resincncf 45860 icccncfext 45872 fourierdlem42 46134 fourierdlem73 46164 fdivmpt 48529 slotresfo 48887 basresposfo 48966 oppff1 49137 |
| Copyright terms: Public domain | W3C validator |