Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 6538 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3883 ↾ cres 5582 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fnssresd 6540 fnresin1 6541 fnresin2 6542 fnresi 6545 fssres 6624 fvreseq0 6897 fnreseql 6907 ffvresb 6980 fnressn 7012 soisores 7178 oprres 7418 ofres 7530 fsplitfpar 7930 fnsuppres 7978 tfrlem1 8178 tz7.48lem 8242 tz7.49c 8247 resixp 8679 ixpfi2 9047 dfac12lem1 9830 ackbij2lem3 9928 cfsmolem 9957 alephsing 9963 ttukeylem3 10198 iunfo 10226 fpwwe2lem7 10324 mulnzcnopr 11551 seqfeq2 13674 seqf1olem2 13691 bpolylem 15686 reeff1 15757 sscres 17452 fullsubc 17481 fullresc 17482 funcres2c 17533 dmaf 17680 cdaf 17681 frmdplusg 18408 frmdss2 18417 gass 18822 dprdfadd 19538 mgpf 19713 prdscrngd 19767 subrgascl 21184 mdetrsca 21660 upxp 22682 uptx 22684 cnmpt1st 22727 cnmpt2nd 22728 cnextfres1 23127 prdstmdd 23183 ressprdsds 23432 prdsxmslem2 23591 xrsdsre 23879 itg1addlem4OLD 24769 recosf1o 25596 resinf1o 25597 dvdsmulf1o 26248 ex-fpar 28727 sspg 28991 ssps 28993 sspmlem 28995 sspn 28999 hhssnv 29527 ressupprn 30926 1stpreimas 30940 dimkerim 31610 cnre2csqlem 31762 rmulccn 31780 raddcn 31781 carsggect 32185 subiwrdlen 32253 signsvtn0 32449 signstres 32454 bnj1253 32897 bnj1280 32900 subfacp1lem5 33046 cvmlift2lem9a 33165 ttrclss 33706 filnetlem4 34497 finixpnum 35689 poimirlem4 35708 poimirlem8 35712 ftc1anclem3 35779 isdrngo2 36043 diaintclN 38999 dibintclN 39108 dihintcl 39285 imaiinfv 40431 fnwe2lem2 40792 aomclem6 40800 deg1mhm 40948 limsupvaluz2 43169 supcnvlimsup 43171 limsupgtlem 43208 resincncf 43306 icccncfext 43318 dvnprodlem1 43377 fourierdlem42 43580 fourierdlem73 43610 rnghmresfn 45409 rnghmsscmap2 45419 rnghmsscmap 45420 rhmresfn 45455 rhmsscmap2 45465 rhmsscmap 45466 fdivmpt 45774 |
Copyright terms: Public domain | W3C validator |