| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6659 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 ↾ cres 5656 Fn wfn 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-fun 6532 df-fn 6533 |
| This theorem is referenced by: fnssresd 6661 fnresin1 6662 fnresin2 6663 fnresi 6666 fssres 6743 fvreseq0 7027 fnreseql 7037 ffvresb 7114 fnressn 7147 soisores 7319 oprres 7573 ofres 7688 fsplitfpar 8115 fnsuppres 8188 tfrlem1 8388 tz7.48lem 8453 tz7.49c 8458 resixp 8945 ixpfi2 9360 ttrclss 9732 dfac12lem1 10156 ackbij2lem3 10252 cfsmolem 10282 alephsing 10288 ttukeylem3 10523 iunfo 10551 fpwwe2lem7 10649 mulnzcnf 11881 seqfeq2 14041 seqf1olem2 14058 bpolylem 16062 reeff1 16136 sscres 17834 fullsubc 17861 fullresc 17862 funcres2c 17914 dmaf 18060 cdaf 18061 frmdplusg 18830 frmdss2 18839 gass 19282 dprdfadd 20001 rngmgpf 20115 mgpf 20206 prdscrngd 20280 rnghmresfn 20577 rnghmsscmap2 20587 rnghmsscmap 20588 rhmresfn 20606 rhmsscmap2 20616 rhmsscmap 20617 subrgascl 22022 upxp 23559 uptx 23561 cnmpt1st 23604 cnmpt2nd 23605 cnextfres1 24004 prdstmdd 24060 ressprdsds 24308 prdsxmslem2 24466 xrsdsre 24748 recosf1o 26494 resinf1o 26495 mpodvdsmulf1o 27154 dvdsmulf1o 27156 ex-fpar 30389 sspg 30655 ssps 30657 sspmlem 30659 sspn 30663 hhssnv 31191 ressupprn 32613 1stpreimas 32629 cnre2csqlem 33887 raddcn 33906 carsggect 34296 subiwrdlen 34364 signsvtn0 34548 signstres 34553 bnj1253 34994 bnj1280 34997 gblacfnacd 35076 subfacp1lem5 35152 cvmlift2lem9a 35271 filnetlem4 36345 finixpnum 37575 poimirlem4 37594 poimirlem8 37598 ftc1anclem3 37665 isdrngo2 37928 diaintclN 41023 dibintclN 41132 dihintcl 41309 imaiinfv 42663 fnwe2lem2 43022 aomclem6 43030 deg1mhm 43171 limsupvaluz2 45715 supcnvlimsup 45717 limsupgtlem 45754 resincncf 45852 icccncfext 45864 fourierdlem42 46126 fourierdlem73 46156 fdivmpt 48468 slotresfo 48821 basresposfo 48900 |
| Copyright terms: Public domain | W3C validator |