| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6603 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 ↾ cres 5618 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnssresd 6605 fnresin1 6606 fnresin2 6607 fnresi 6610 fssres 6689 fvreseq0 6971 fnreseql 6981 ffvresb 7058 fnressn 7091 soisores 7261 oprres 7514 ofres 7629 fsplitfpar 8048 fnsuppres 8121 tfrlem1 8295 tz7.48lem 8360 tz7.49c 8365 resixp 8857 ixpfi2 9234 ttrclss 9610 dfac12lem1 10035 ackbij2lem3 10131 cfsmolem 10161 alephsing 10167 ttukeylem3 10402 iunfo 10430 fpwwe2lem7 10528 mulnzcnf 11763 seqfeq2 13932 seqf1olem2 13949 bpolylem 15955 reeff1 16029 sscres 17730 fullsubc 17757 fullresc 17758 funcres2c 17810 dmaf 17956 cdaf 17957 frmdplusg 18762 frmdss2 18771 gass 19214 dprdfadd 19935 rngmgpf 20076 mgpf 20167 prdscrngd 20241 rnghmresfn 20535 rnghmsscmap2 20545 rnghmsscmap 20546 rhmresfn 20564 rhmsscmap2 20574 rhmsscmap 20575 subrgascl 22002 upxp 23539 uptx 23541 cnmpt1st 23584 cnmpt2nd 23585 cnextfres1 23984 prdstmdd 24040 ressprdsds 24287 prdsxmslem2 24445 xrsdsre 24727 recosf1o 26472 resinf1o 26473 mpodvdsmulf1o 27132 dvdsmulf1o 27134 ex-fpar 30440 sspg 30706 ssps 30708 sspmlem 30710 sspn 30714 hhssnv 31242 ressupprn 32669 1stpreimas 32685 cnre2csqlem 33921 raddcn 33940 carsggect 34329 subiwrdlen 34397 signsvtn0 34581 signstres 34586 bnj1253 35027 bnj1280 35030 gblacfnacd 35144 subfacp1lem5 35226 cvmlift2lem9a 35345 filnetlem4 36421 finixpnum 37651 poimirlem4 37670 poimirlem8 37674 ftc1anclem3 37741 isdrngo2 38004 diaintclN 41103 dibintclN 41212 dihintcl 41389 imaiinfv 42732 fnwe2lem2 43090 aomclem6 43098 deg1mhm 43239 limsupvaluz2 45782 supcnvlimsup 45784 limsupgtlem 45821 resincncf 45919 icccncfext 45931 fourierdlem42 46193 fourierdlem73 46223 fdivmpt 48578 slotresfo 48936 basresposfo 49015 oppff1 49186 |
| Copyright terms: Public domain | W3C validator |