| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 6643 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 ↾ cres 5643 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnssresd 6645 fnresin1 6646 fnresin2 6647 fnresi 6650 fssres 6729 fvreseq0 7013 fnreseql 7023 ffvresb 7100 fnressn 7133 soisores 7305 oprres 7560 ofres 7675 fsplitfpar 8100 fnsuppres 8173 tfrlem1 8347 tz7.48lem 8412 tz7.49c 8417 resixp 8909 ixpfi2 9308 ttrclss 9680 dfac12lem1 10104 ackbij2lem3 10200 cfsmolem 10230 alephsing 10236 ttukeylem3 10471 iunfo 10499 fpwwe2lem7 10597 mulnzcnf 11831 seqfeq2 13997 seqf1olem2 14014 bpolylem 16021 reeff1 16095 sscres 17792 fullsubc 17819 fullresc 17820 funcres2c 17872 dmaf 18018 cdaf 18019 frmdplusg 18788 frmdss2 18797 gass 19240 dprdfadd 19959 rngmgpf 20073 mgpf 20164 prdscrngd 20238 rnghmresfn 20535 rnghmsscmap2 20545 rnghmsscmap 20546 rhmresfn 20564 rhmsscmap2 20574 rhmsscmap 20575 subrgascl 21980 upxp 23517 uptx 23519 cnmpt1st 23562 cnmpt2nd 23563 cnextfres1 23962 prdstmdd 24018 ressprdsds 24266 prdsxmslem2 24424 xrsdsre 24706 recosf1o 26451 resinf1o 26452 mpodvdsmulf1o 27111 dvdsmulf1o 27113 ex-fpar 30398 sspg 30664 ssps 30666 sspmlem 30668 sspn 30672 hhssnv 31200 ressupprn 32620 1stpreimas 32636 cnre2csqlem 33907 raddcn 33926 carsggect 34316 subiwrdlen 34384 signsvtn0 34568 signstres 34573 bnj1253 35014 bnj1280 35017 gblacfnacd 35096 subfacp1lem5 35178 cvmlift2lem9a 35297 filnetlem4 36376 finixpnum 37606 poimirlem4 37625 poimirlem8 37629 ftc1anclem3 37696 isdrngo2 37959 diaintclN 41059 dibintclN 41168 dihintcl 41345 imaiinfv 42688 fnwe2lem2 43047 aomclem6 43055 deg1mhm 43196 limsupvaluz2 45743 supcnvlimsup 45745 limsupgtlem 45782 resincncf 45880 icccncfext 45892 fourierdlem42 46154 fourierdlem73 46184 fdivmpt 48533 slotresfo 48891 basresposfo 48970 oppff1 49141 |
| Copyright terms: Public domain | W3C validator |