![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 6702 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 ↾ cres 5702 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnssresd 6704 fnresin1 6705 fnresin2 6706 fnresi 6709 fssres 6787 fvreseq0 7071 fnreseql 7081 ffvresb 7159 fnressn 7192 soisores 7363 oprres 7618 ofres 7733 fsplitfpar 8159 fnsuppres 8232 tfrlem1 8432 tz7.48lem 8497 tz7.49c 8502 resixp 8991 ixpfi2 9420 ttrclss 9789 dfac12lem1 10213 ackbij2lem3 10309 cfsmolem 10339 alephsing 10345 ttukeylem3 10580 iunfo 10608 fpwwe2lem7 10706 mulnzcnf 11936 seqfeq2 14076 seqf1olem2 14093 bpolylem 16096 reeff1 16168 sscres 17884 fullsubc 17914 fullresc 17915 funcres2c 17968 dmaf 18116 cdaf 18117 frmdplusg 18889 frmdss2 18898 gass 19341 dprdfadd 20064 rngmgpf 20184 mgpf 20275 prdscrngd 20345 rnghmresfn 20641 rnghmsscmap2 20651 rnghmsscmap 20652 rhmresfn 20670 rhmsscmap2 20680 rhmsscmap 20681 subrgascl 22113 upxp 23652 uptx 23654 cnmpt1st 23697 cnmpt2nd 23698 cnextfres1 24097 prdstmdd 24153 ressprdsds 24402 prdsxmslem2 24563 xrsdsre 24851 itg1addlem4OLD 25754 recosf1o 26595 resinf1o 26596 mpodvdsmulf1o 27255 dvdsmulf1o 27257 ex-fpar 30494 sspg 30760 ssps 30762 sspmlem 30764 sspn 30768 hhssnv 31296 ressupprn 32702 1stpreimas 32717 cnre2csqlem 33856 raddcn 33875 carsggect 34283 subiwrdlen 34351 signsvtn0 34547 signstres 34552 bnj1253 34993 bnj1280 34996 gblacfnacd 35075 subfacp1lem5 35152 cvmlift2lem9a 35271 filnetlem4 36347 finixpnum 37565 poimirlem4 37584 poimirlem8 37588 ftc1anclem3 37655 isdrngo2 37918 diaintclN 41015 dibintclN 41124 dihintcl 41301 imaiinfv 42649 fnwe2lem2 43008 aomclem6 43016 deg1mhm 43161 limsupvaluz2 45659 supcnvlimsup 45661 limsupgtlem 45698 resincncf 45796 icccncfext 45808 dvnprodlem1 45867 fourierdlem42 46070 fourierdlem73 46100 fdivmpt 48274 |
Copyright terms: Public domain | W3C validator |