MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv2 Structured version   Visualization version   GIF version

Theorem funcnv2 6545
Description: A simpler equivalence for single-rooted (see funcnv 6546). (Contributed by NM, 9-Aug-2004.)
Assertion
Ref Expression
funcnv2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv2
StepHypRef Expression
1 relcnv 6050 . . 3 Rel 𝐴
2 dffun6 6488 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦∃*𝑥 𝑦𝐴𝑥))
31, 2mpbiran 709 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑦𝐴𝑥)
4 vex 3438 . . . . 5 𝑦 ∈ V
5 vex 3438 . . . . 5 𝑥 ∈ V
64, 5brcnv 5820 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
76mobii 2542 . . 3 (∃*𝑥 𝑦𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦)
87albii 1820 . 2 (∀𝑦∃*𝑥 𝑦𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
93, 8bitri 275 1 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1539  ∃*wmo 2532   class class class wbr 5089  ccnv 5613  Rel wrel 5619  Fun wfun 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6479
This theorem is referenced by:  funcnv  6546  fun2cnv  6548  fun11  6551  dff12  6714  1stconst  8025  2ndconst  8026
  Copyright terms: Public domain W3C validator