| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnv2 | Structured version Visualization version GIF version | ||
| Description: A simpler equivalence for single-rooted (see funcnv 6558). (Contributed by NM, 9-Aug-2004.) |
| Ref | Expression |
|---|---|
| funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6060 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | dffun6 6500 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
| 4 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 5 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | brcnv 5829 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 7 | 6 | mobii 2545 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
| 8 | 7 | albii 1820 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| 9 | 3, 8 | bitri 275 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃*wmo 2535 class class class wbr 5095 ◡ccnv 5620 Rel wrel 5626 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: funcnv 6558 fun2cnv 6560 fun11 6563 dff12 6726 1stconst 8039 2ndconst 8040 |
| Copyright terms: Public domain | W3C validator |