| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnv2 | Structured version Visualization version GIF version | ||
| Description: A simpler equivalence for single-rooted (see funcnv 6585). (Contributed by NM, 9-Aug-2004.) |
| Ref | Expression |
|---|---|
| funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6075 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | dffun6 6524 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
| 4 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 5 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | brcnv 5846 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 7 | 6 | mobii 2541 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
| 8 | 7 | albii 1819 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| 9 | 3, 8 | bitri 275 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃*wmo 2531 class class class wbr 5107 ◡ccnv 5637 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funcnv 6585 fun2cnv 6587 fun11 6590 dff12 6755 1stconst 8079 2ndconst 8080 |
| Copyright terms: Public domain | W3C validator |