Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcnv2 | Structured version Visualization version GIF version |
Description: A simpler equivalence for single-rooted (see funcnv 6532). (Contributed by NM, 9-Aug-2004.) |
Ref | Expression |
---|---|
funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6022 | . . 3 ⊢ Rel ◡𝐴 | |
2 | dffun6 6471 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
3 | 1, 2 | mpbiran 707 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
4 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
5 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | brcnv 5804 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
7 | 6 | mobii 2546 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
8 | 7 | albii 1819 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
9 | 3, 8 | bitri 275 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 ∃*wmo 2536 class class class wbr 5081 ◡ccnv 5599 Rel wrel 5605 Fun wfun 6452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-fun 6460 |
This theorem is referenced by: funcnv 6532 fun2cnv 6534 fun11 6537 dff12 6699 1stconst 7972 2ndconst 7973 |
Copyright terms: Public domain | W3C validator |