MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv2 Structured version   Visualization version   GIF version

Theorem funcnv2 6097
Description: A simpler equivalence for single-rooted (see funcnv 6098). (Contributed by NM, 9-Aug-2004.)
Assertion
Ref Expression
funcnv2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv2
StepHypRef Expression
1 relcnv 5644 . . 3 Rel 𝐴
2 dffun6 6046 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦∃*𝑥 𝑦𝐴𝑥))
31, 2mpbiran 688 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑦𝐴𝑥)
4 vex 3354 . . . . 5 𝑦 ∈ V
5 vex 3354 . . . . 5 𝑥 ∈ V
64, 5brcnv 5443 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
76mobii 2641 . . 3 (∃*𝑥 𝑦𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦)
87albii 1895 . 2 (∀𝑦∃*𝑥 𝑦𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
93, 8bitri 264 1 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1629  ∃*wmo 2619   class class class wbr 4786  ccnv 5248  Rel wrel 5254  Fun wfun 6025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-fun 6033
This theorem is referenced by:  funcnv  6098  fun2cnv  6100  fun11  6103  dff12  6240  1stconst  7416  2ndconst  7417
  Copyright terms: Public domain W3C validator