MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv2 Structured version   Visualization version   GIF version

Theorem funcnv2 6616
Description: A simpler equivalence for single-rooted (see funcnv 6617). (Contributed by NM, 9-Aug-2004.)
Assertion
Ref Expression
funcnv2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv2
StepHypRef Expression
1 relcnv 6103 . . 3 Rel 𝐴
2 dffun6 6556 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦∃*𝑥 𝑦𝐴𝑥))
31, 2mpbiran 707 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑦𝐴𝑥)
4 vex 3478 . . . . 5 𝑦 ∈ V
5 vex 3478 . . . . 5 𝑥 ∈ V
64, 5brcnv 5882 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
76mobii 2542 . . 3 (∃*𝑥 𝑦𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦)
87albii 1821 . 2 (∀𝑦∃*𝑥 𝑦𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
93, 8bitri 274 1 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539  ∃*wmo 2532   class class class wbr 5148  ccnv 5675  Rel wrel 5681  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-fun 6545
This theorem is referenced by:  funcnv  6617  fun2cnv  6619  fun11  6622  dff12  6786  1stconst  8085  2ndconst  8086
  Copyright terms: Public domain W3C validator