MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv3 Structured version   Visualization version   GIF version

Theorem funcnv3 6547
Description: A condition showing a class is single-rooted. (See funcnv 6546). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 5826 . . . . . 6 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
21eqabri 2872 . . . . 5 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
32biimpi 216 . . . 4 (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦)
43biantrurd 532 . . 3 (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)))
54ralbiia 3074 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
6 funcnv 6546 . 2 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
7 df-reu 3345 . . . 4 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
8 vex 3438 . . . . . . 7 𝑥 ∈ V
9 vex 3438 . . . . . . 7 𝑦 ∈ V
108, 9breldm 5846 . . . . . 6 (𝑥𝐴𝑦𝑥 ∈ dom 𝐴)
1110pm4.71ri 560 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
1211eubii 2579 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
13 df-eu 2563 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
147, 12, 133bitr2i 299 . . 3 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
1514ralbii 3076 . 2 (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
165, 6, 153bitr4i 303 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2110  ∃*wmo 2532  ∃!weu 2562  wral 3045  ∃!wreu 3342   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  Fun wfun 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6479
This theorem is referenced by:  cantnf2  43337
  Copyright terms: Public domain W3C validator