| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnv3 | Structured version Visualization version GIF version | ||
| Description: A condition showing a class is single-rooted. (See funcnv 6587). (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| funcnv3 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 5854 | . . . . . 6 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 2 | 1 | eqabri 2872 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦) |
| 4 | 3 | biantrurd 532 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))) |
| 5 | 4 | ralbiia 3074 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 6 | funcnv 6587 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | |
| 7 | df-reu 3357 | . . . 4 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) | |
| 8 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 9 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | breldm 5874 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑥 ∈ dom 𝐴) |
| 11 | 10 | pm4.71ri 560 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
| 12 | 11 | eubii 2579 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
| 13 | df-eu 2563 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) | |
| 14 | 7, 12, 13 | 3bitr2i 299 | . . 3 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 15 | 14 | ralbii 3076 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 16 | 5, 6, 15 | 3bitr4i 303 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 ∃!weu 2562 ∀wral 3045 ∃!wreu 3354 class class class wbr 5109 ◡ccnv 5639 dom cdm 5640 ran crn 5641 Fun wfun 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 |
| This theorem is referenced by: cantnf2 43307 |
| Copyright terms: Public domain | W3C validator |