![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnv3 | Structured version Visualization version GIF version |
Description: A condition showing a class is single-rooted. (See funcnv 6575). (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
funcnv3 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5849 | . . . . . 6 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
2 | 1 | eqabi 2882 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦) |
4 | 3 | biantrurd 534 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))) |
5 | 4 | ralbiia 3095 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
6 | funcnv 6575 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | |
7 | df-reu 3357 | . . . 4 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) | |
8 | vex 3452 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
9 | vex 3452 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | breldm 5869 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑥 ∈ dom 𝐴) |
11 | 10 | pm4.71ri 562 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
12 | 11 | eubii 2584 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
13 | df-eu 2568 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) | |
14 | 7, 12, 13 | 3bitr2i 299 | . . 3 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
15 | 14 | ralbii 3097 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
16 | 5, 6, 15 | 3bitr4i 303 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃*wmo 2537 ∃!weu 2567 ∀wral 3065 ∃!wreu 3354 class class class wbr 5110 ◡ccnv 5637 dom cdm 5638 ran crn 5639 Fun wfun 6495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6503 |
This theorem is referenced by: cantnf2 41689 |
Copyright terms: Public domain | W3C validator |