MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv3 Structured version   Visualization version   GIF version

Theorem funcnv3 6586
Description: A condition showing a class is single-rooted. (See funcnv 6585). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 5852 . . . . . 6 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
21eqabri 2871 . . . . 5 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
32biimpi 216 . . . 4 (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦)
43biantrurd 532 . . 3 (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)))
54ralbiia 3073 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
6 funcnv 6585 . 2 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
7 df-reu 3355 . . . 4 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
8 vex 3451 . . . . . . 7 𝑥 ∈ V
9 vex 3451 . . . . . . 7 𝑦 ∈ V
108, 9breldm 5872 . . . . . 6 (𝑥𝐴𝑦𝑥 ∈ dom 𝐴)
1110pm4.71ri 560 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
1211eubii 2578 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
13 df-eu 2562 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
147, 12, 133bitr2i 299 . . 3 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
1514ralbii 3075 . 2 (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
165, 6, 153bitr4i 303 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  ∃!wreu 3352   class class class wbr 5107  ccnv 5637  dom cdm 5638  ran crn 5639  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513
This theorem is referenced by:  cantnf2  43314
  Copyright terms: Public domain W3C validator