Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVeqd Structured version   Visualization version   GIF version

Theorem funALTVeqd 36246
 Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
funALTVeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
funALTVeqd (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))

Proof of Theorem funALTVeqd
StepHypRef Expression
1 funALTVeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 funALTVeq 36244 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
31, 2syl 17 1 (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   FunALTV wfunALTV 35795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5035  df-opab 5097  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-coss 35970  df-cnvrefrel 36076  df-funALTV 36226 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator