Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVeq Structured version   Visualization version   GIF version

Theorem funALTVeq 38081
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funALTVeq (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))

Proof of Theorem funALTVeq
StepHypRef Expression
1 eqimss2 4036 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funALTVss 38080 . . 3 (𝐵𝐴 → ( FunALTV 𝐴 → FunALTV 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐴 → FunALTV 𝐵))
4 eqimss 4035 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funALTVss 38080 . . 3 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wss 3943   FunALTV wfunALTV 37585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-coss 37792  df-cnvrefrel 37908  df-funALTV 38063
This theorem is referenced by:  funALTVeqi  38082  funALTVeqd  38083
  Copyright terms: Public domain W3C validator