![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVeq | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funALTVeq | ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 4036 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | funALTVss 38080 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ( FunALTV 𝐴 → FunALTV 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 → FunALTV 𝐵)) |
4 | eqimss 4035 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | funALTVss 38080 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) |
7 | 3, 6 | impbid 211 | 1 ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ⊆ wss 3943 FunALTV wfunALTV 37585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-coss 37792 df-cnvrefrel 37908 df-funALTV 38063 |
This theorem is referenced by: funALTVeqi 38082 funALTVeqd 38083 |
Copyright terms: Public domain | W3C validator |