Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVeq Structured version   Visualization version   GIF version

Theorem funALTVeq 36811
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funALTVeq (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))

Proof of Theorem funALTVeq
StepHypRef Expression
1 eqimss2 3978 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funALTVss 36810 . . 3 (𝐵𝐴 → ( FunALTV 𝐴 → FunALTV 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐴 → FunALTV 𝐵))
4 eqimss 3977 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funALTVss 36810 . . 3 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3887   FunALTV wfunALTV 36364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-coss 36537  df-cnvrefrel 36643  df-funALTV 36793
This theorem is referenced by:  funALTVeqi  36812  funALTVeqd  36813
  Copyright terms: Public domain W3C validator