Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVeqi Structured version   Visualization version   GIF version

Theorem funALTVeqi 38636
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funALTVeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funALTVeqi ( FunALTV 𝐴 ↔ FunALTV 𝐵)

Proof of Theorem funALTVeqi
StepHypRef Expression
1 funALTVeqi.1 . 2 𝐴 = 𝐵
2 funALTVeq 38635 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
31, 2ax-mp 5 1 ( FunALTV 𝐴 ↔ FunALTV 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539   FunALTV wfunALTV 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-coss 38346  df-cnvrefrel 38462  df-funALTV 38617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator