Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVeqi Structured version   Visualization version   GIF version

Theorem funALTVeqi 37874
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funALTVeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funALTVeqi ( FunALTV 𝐴 ↔ FunALTV 𝐵)

Proof of Theorem funALTVeqi
StepHypRef Expression
1 funALTVeqi.1 . 2 𝐴 = 𝐵
2 funALTVeq 37873 . 2 (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵))
31, 2ax-mp 5 1 ( FunALTV 𝐴 ↔ FunALTV 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539   FunALTV wfunALTV 37377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37584  df-cnvrefrel 37700  df-funALTV 37855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator