![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funpr | Structured version Visualization version GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
funpr.1 | ⊢ 𝐴 ∈ V |
funpr.2 | ⊢ 𝐵 ∈ V |
funpr.3 | ⊢ 𝐶 ∈ V |
funpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 464 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | pm3.2i 464 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
7 | funprg 6180 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
8 | 3, 6, 7 | mp3an12 1579 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 {cpr 4401 〈cop 4405 Fun wfun 6121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-fun 6129 |
This theorem is referenced by: funtp 6183 fpr 6677 fnprb 6733 1sdom 8438 |
Copyright terms: Public domain | W3C validator |