| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funpr | Structured version Visualization version GIF version | ||
| Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| Ref | Expression |
|---|---|
| funpr.1 | ⊢ 𝐴 ∈ V |
| funpr.2 | ⊢ 𝐵 ∈ V |
| funpr.3 | ⊢ 𝐶 ∈ V |
| funpr.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 6 | 4, 5 | pm3.2i 470 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
| 7 | funprg 6595 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
| 8 | 3, 6, 7 | mp3an12 1453 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 {cpr 4608 〈cop 4612 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 |
| This theorem is referenced by: funtp 6598 fpr 7149 fnprb 7205 1sdomOLD 9262 |
| Copyright terms: Public domain | W3C validator |