MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funpr Structured version   Visualization version   GIF version

Theorem funpr 6474
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
funpr.1 𝐴 ∈ V
funpr.2 𝐵 ∈ V
funpr.3 𝐶 ∈ V
funpr.4 𝐷 ∈ V
Assertion
Ref Expression
funpr (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funpr
StepHypRef Expression
1 funpr.1 . . 3 𝐴 ∈ V
2 funpr.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 470 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 funpr.3 . . 3 𝐶 ∈ V
5 funpr.4 . . 3 𝐷 ∈ V
64, 5pm3.2i 470 . 2 (𝐶 ∈ V ∧ 𝐷 ∈ V)
7 funprg 6472 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
83, 6, 7mp3an12 1449 1 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  Vcvv 3422  {cpr 4560  cop 4564  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420
This theorem is referenced by:  funtp  6475  fpr  7008  fnprb  7066  1sdom  8955
  Copyright terms: Public domain W3C validator