| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funprg | Structured version Visualization version GIF version | ||
| Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| funprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6597 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {〈𝐴, 𝐶〉}) | |
| 2 | funsng 6597 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {〈𝐵, 𝐷〉}) | |
| 3 | 1, 2 | anim12i 613 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
| 4 | 3 | an4s 660 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
| 5 | 4 | 3adant3 1132 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
| 6 | dmsnopg 6213 | . . . . . 6 ⊢ (𝐶 ∈ 𝑋 → dom {〈𝐴, 𝐶〉} = {𝐴}) | |
| 7 | dmsnopg 6213 | . . . . . 6 ⊢ (𝐷 ∈ 𝑌 → dom {〈𝐵, 𝐷〉} = {𝐵}) | |
| 8 | 6, 7 | ineqan12d 4202 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ({𝐴} ∩ {𝐵})) |
| 9 | disjsn2 4692 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 10 | 8, 9 | sylan9eq 2789 | . . . 4 ⊢ (((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
| 11 | 10 | 3adant1 1130 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
| 12 | funun 6592 | . . 3 ⊢ (((Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉}) ∧ (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) | |
| 13 | 5, 11, 12 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
| 14 | df-pr 4609 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 15 | 14 | funeqi 6567 | . 2 ⊢ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ↔ Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
| 16 | 13, 15 | sylibr 234 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 {cpr 4608 〈cop 4612 dom cdm 5665 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-fun 6543 |
| This theorem is referenced by: funtpg 6601 funpr 6602 fnprg 6605 fpropnf1 7269 |
| Copyright terms: Public domain | W3C validator |