![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funprg | Structured version Visualization version GIF version |
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
funprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6619 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {〈𝐴, 𝐶〉}) | |
2 | funsng 6619 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {〈𝐵, 𝐷〉}) | |
3 | 1, 2 | anim12i 613 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
4 | 3 | an4s 660 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
6 | dmsnopg 6235 | . . . . . 6 ⊢ (𝐶 ∈ 𝑋 → dom {〈𝐴, 𝐶〉} = {𝐴}) | |
7 | dmsnopg 6235 | . . . . . 6 ⊢ (𝐷 ∈ 𝑌 → dom {〈𝐵, 𝐷〉} = {𝐵}) | |
8 | 6, 7 | ineqan12d 4230 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ({𝐴} ∩ {𝐵})) |
9 | disjsn2 4717 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
10 | 8, 9 | sylan9eq 2795 | . . . 4 ⊢ (((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
11 | 10 | 3adant1 1129 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
12 | funun 6614 | . . 3 ⊢ (((Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉}) ∧ (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) | |
13 | 5, 11, 12 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
14 | df-pr 4634 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
15 | 14 | funeqi 6589 | . 2 ⊢ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ↔ Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
16 | 13, 15 | sylibr 234 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 {cpr 4633 〈cop 4637 dom cdm 5689 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-fun 6565 |
This theorem is referenced by: funtpg 6623 funpr 6624 fnprg 6627 fpropnf1 7287 |
Copyright terms: Public domain | W3C validator |