MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funprg Structured version   Visualization version   GIF version

Theorem funprg 6535
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funprg
StepHypRef Expression
1 funsng 6532 . . . . . 6 ((𝐴𝑉𝐶𝑋) → Fun {⟨𝐴, 𝐶⟩})
2 funsng 6532 . . . . . 6 ((𝐵𝑊𝐷𝑌) → Fun {⟨𝐵, 𝐷⟩})
31, 2anim12i 613 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
43an4s 660 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
543adant3 1132 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
6 dmsnopg 6160 . . . . . 6 (𝐶𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴})
7 dmsnopg 6160 . . . . . 6 (𝐷𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵})
86, 7ineqan12d 4172 . . . . 5 ((𝐶𝑋𝐷𝑌) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵}))
9 disjsn2 4665 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
108, 9sylan9eq 2786 . . . 4 (((𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
11103adant1 1130 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
12 funun 6527 . . 3 (((Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
135, 11, 12syl2anc 584 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
14 df-pr 4579 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
1514funeqi 6502 . 2 (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
1613, 15sylibr 234 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cun 3900  cin 3901  c0 4283  {csn 4576  {cpr 4578  cop 4582  dom cdm 5616  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483
This theorem is referenced by:  funtpg  6536  funpr  6537  fnprg  6540  fpropnf1  7201
  Copyright terms: Public domain W3C validator