![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funprg | Structured version Visualization version GIF version |
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
funprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6553 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {⟨𝐴, 𝐶⟩}) | |
2 | funsng 6553 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {⟨𝐵, 𝐷⟩}) | |
3 | 1, 2 | anim12i 614 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩})) |
4 | 3 | an4s 659 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩})) |
5 | 4 | 3adant3 1133 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩})) |
6 | dmsnopg 6166 | . . . . . 6 ⊢ (𝐶 ∈ 𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴}) | |
7 | dmsnopg 6166 | . . . . . 6 ⊢ (𝐷 ∈ 𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵}) | |
8 | 6, 7 | ineqan12d 4175 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵})) |
9 | disjsn2 4674 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
10 | 8, 9 | sylan9eq 2793 | . . . 4 ⊢ (((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) |
11 | 10 | 3adant1 1131 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) |
12 | funun 6548 | . . 3 ⊢ (((Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) | |
13 | 5, 11, 12 | syl2anc 585 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
14 | df-pr 4590 | . . 3 ⊢ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) | |
15 | 14 | funeqi 6523 | . 2 ⊢ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
16 | 13, 15 | sylibr 233 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∪ cun 3909 ∩ cin 3910 ∅c0 4283 {csn 4587 {cpr 4589 ⟨cop 4593 dom cdm 5634 Fun wfun 6491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-fun 6499 |
This theorem is referenced by: funtpg 6557 funpr 6558 fnprg 6561 fpropnf1 7215 |
Copyright terms: Public domain | W3C validator |