Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funprg | Structured version Visualization version GIF version |
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
funprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6469 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {〈𝐴, 𝐶〉}) | |
2 | funsng 6469 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {〈𝐵, 𝐷〉}) | |
3 | 1, 2 | anim12i 612 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
4 | 3 | an4s 656 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
5 | 4 | 3adant3 1130 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
6 | dmsnopg 6105 | . . . . . 6 ⊢ (𝐶 ∈ 𝑋 → dom {〈𝐴, 𝐶〉} = {𝐴}) | |
7 | dmsnopg 6105 | . . . . . 6 ⊢ (𝐷 ∈ 𝑌 → dom {〈𝐵, 𝐷〉} = {𝐵}) | |
8 | 6, 7 | ineqan12d 4145 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ({𝐴} ∩ {𝐵})) |
9 | disjsn2 4645 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
10 | 8, 9 | sylan9eq 2799 | . . . 4 ⊢ (((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
11 | 10 | 3adant1 1128 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
12 | funun 6464 | . . 3 ⊢ (((Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉}) ∧ (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) | |
13 | 5, 11, 12 | syl2anc 583 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
14 | df-pr 4561 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
15 | 14 | funeqi 6439 | . 2 ⊢ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ↔ Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
16 | 13, 15 | sylibr 233 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 {cpr 4560 〈cop 4564 dom cdm 5580 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 |
This theorem is referenced by: funtpg 6473 funpr 6474 fnprg 6477 fpropnf1 7121 |
Copyright terms: Public domain | W3C validator |