![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funprg | Structured version Visualization version GIF version |
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
funprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6629 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {〈𝐴, 𝐶〉}) | |
2 | funsng 6629 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {〈𝐵, 𝐷〉}) | |
3 | 1, 2 | anim12i 612 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
4 | 3 | an4s 659 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
5 | 4 | 3adant3 1132 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉})) |
6 | dmsnopg 6244 | . . . . . 6 ⊢ (𝐶 ∈ 𝑋 → dom {〈𝐴, 𝐶〉} = {𝐴}) | |
7 | dmsnopg 6244 | . . . . . 6 ⊢ (𝐷 ∈ 𝑌 → dom {〈𝐵, 𝐷〉} = {𝐵}) | |
8 | 6, 7 | ineqan12d 4243 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ({𝐴} ∩ {𝐵})) |
9 | disjsn2 4737 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
10 | 8, 9 | sylan9eq 2800 | . . . 4 ⊢ (((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
11 | 10 | 3adant1 1130 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
12 | funun 6624 | . . 3 ⊢ (((Fun {〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉}) ∧ (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) | |
13 | 5, 11, 12 | syl2anc 583 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
14 | df-pr 4651 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
15 | 14 | funeqi 6599 | . 2 ⊢ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ↔ Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
16 | 13, 15 | sylibr 234 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 dom cdm 5700 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 |
This theorem is referenced by: funtpg 6633 funpr 6634 fnprg 6637 fpropnf1 7304 |
Copyright terms: Public domain | W3C validator |