|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispaceel2 | Structured version Visualization version GIF version | ||
| Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | 
| Ref | Expression | 
|---|---|
| gneispaceel2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gneispace.a | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
| 2 | 1 | gneispaceel 44156 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | 
| 3 | fveq2 6906 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
| 4 | eleq1 2829 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | |
| 5 | 3, 4 | raleqbidv 3346 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 ↔ ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) | 
| 6 | 5 | rspccv 3619 | . . . 4 ⊢ (∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) | 
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) | 
| 8 | eleq2 2830 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑃 ∈ 𝑛 ↔ 𝑃 ∈ 𝑁)) | |
| 9 | 8 | rspccv 3619 | . . 3 ⊢ (∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁)) | 
| 10 | 7, 9 | syl6 35 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁))) | 
| 11 | 10 | 3imp 1111 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 dom cdm 5685 ⟶wf 6557 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |