![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispaceel2 | Structured version Visualization version GIF version |
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
Ref | Expression |
---|---|
gneispaceel2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
2 | 1 | gneispaceel 43357 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
4 | eleq1 2820 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | |
5 | 3, 4 | raleqbidv 3341 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 ↔ ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
6 | 5 | rspccv 3609 | . . . 4 ⊢ (∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
8 | eleq2 2821 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑃 ∈ 𝑛 ↔ 𝑃 ∈ 𝑁)) | |
9 | 8 | rspccv 3609 | . . 3 ⊢ (∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁)) |
10 | 7, 9 | syl6 35 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁))) |
11 | 10 | 3imp 1110 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |