Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispaceel2 Structured version   Visualization version   GIF version

Theorem gneispaceel2 44133
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispaceel2 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)   𝑁(𝑓,𝑠,𝑝)

Proof of Theorem gneispaceel2
StepHypRef Expression
1 gneispace.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispaceel 44132 . . . 4 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛)
3 fveq2 6858 . . . . . 6 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
4 eleq1 2816 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑛𝑃𝑛))
53, 4raleqbidv 3319 . . . . 5 (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹𝑝)𝑝𝑛 ↔ ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
65rspccv 3585 . . . 4 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
72, 6syl 17 . . 3 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
8 eleq2 2817 . . . 4 (𝑛 = 𝑁 → (𝑃𝑛𝑃𝑁))
98rspccv 3585 . . 3 (∀𝑛 ∈ (𝐹𝑃)𝑃𝑛 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁))
107, 9syl6 35 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁)))
11103imp 1110 1 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  dom cdm 5638  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator