![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispaceel2 | Structured version Visualization version GIF version |
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
Ref | Expression |
---|---|
gneispaceel2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
2 | 1 | gneispaceel 44133 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
3 | fveq2 6907 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
4 | eleq1 2827 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | |
5 | 3, 4 | raleqbidv 3344 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 ↔ ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
6 | 5 | rspccv 3619 | . . . 4 ⊢ (∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
8 | eleq2 2828 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑃 ∈ 𝑛 ↔ 𝑃 ∈ 𝑁)) | |
9 | 8 | rspccv 3619 | . . 3 ⊢ (∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁)) |
10 | 7, 9 | syl6 35 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁))) |
11 | 10 | 3imp 1110 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |