Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispaceel2 | Structured version Visualization version GIF version |
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
Ref | Expression |
---|---|
gneispaceel2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
2 | 1 | gneispaceel 41299 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
3 | fveq2 6674 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
4 | eleq1 2820 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | |
5 | 3, 4 | raleqbidv 3304 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 ↔ ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
6 | 5 | rspccv 3523 | . . . 4 ⊢ (∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛)) |
8 | eleq2 2821 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑃 ∈ 𝑛 ↔ 𝑃 ∈ 𝑁)) | |
9 | 8 | rspccv 3523 | . . 3 ⊢ (∀𝑛 ∈ (𝐹‘𝑃)𝑃 ∈ 𝑛 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁)) |
10 | 7, 9 | syl6 35 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹‘𝑃) → 𝑃 ∈ 𝑁))) |
11 | 10 | 3imp 1112 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 {cab 2716 ∀wral 3053 ∖ cdif 3840 ⊆ wss 3843 ∅c0 4211 𝒫 cpw 4488 {csn 4516 dom cdm 5525 ⟶wf 6335 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |