Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispaceel2 Structured version   Visualization version   GIF version

Theorem gneispaceel2 43639
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispaceel2 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)   𝑁(𝑓,𝑠,𝑝)

Proof of Theorem gneispaceel2
StepHypRef Expression
1 gneispace.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispaceel 43638 . . . 4 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛)
3 fveq2 6892 . . . . . 6 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
4 eleq1 2813 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑛𝑃𝑛))
53, 4raleqbidv 3330 . . . . 5 (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹𝑝)𝑝𝑛 ↔ ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
65rspccv 3598 . . . 4 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
72, 6syl 17 . . 3 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
8 eleq2 2814 . . . 4 (𝑛 = 𝑁 → (𝑃𝑛𝑃𝑁))
98rspccv 3598 . . 3 (∀𝑛 ∈ (𝐹𝑃)𝑃𝑛 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁))
107, 9syl6 35 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁)))
11103imp 1108 1 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wral 3051  cdif 3936  wss 3939  c0 4318  𝒫 cpw 4598  {csn 4624  dom cdm 5672  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator