| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispaceel | Structured version Visualization version GIF version | ||
| Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
| Ref | Expression |
|---|---|
| gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
| Ref | Expression |
|---|---|
| gneispaceel | ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gneispace.a | . . . 4 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
| 2 | 1 | gneispace2 44081 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) |
| 3 | 2 | ibi 267 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 4 | simpl 482 | . . 3 ⊢ ((𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) → 𝑝 ∈ 𝑛) | |
| 5 | 4 | 2ralimi 3108 | . 2 ⊢ (∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
| 6 | 3, 5 | simpl2im 503 | 1 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∖ cdif 3921 ⊆ wss 3924 ∅c0 4306 𝒫 cpw 4573 {csn 4599 dom cdm 5651 ⟶wf 6523 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 |
| This theorem is referenced by: gneispaceel2 44093 |
| Copyright terms: Public domain | W3C validator |