MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Structured version   Visualization version   GIF version

Theorem elima 6052
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2 𝐴 ∈ V
2 elimag 6051 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wrex 3060  Vcvv 3459   class class class wbr 5119  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  elima2  6053  rninxp  6168  imaco  6240  imaindm  6288  isarep1  6626  isarep1OLD  6627  eliman0  6916  funimass4  6943  isomin  7330  dfsup2  9456  dfac10b  10154  hausmapdom  23438  pi1blem  24990  scutun12  27774  madeval2  27813  adjbd1o  32066  brimage  35944  dfrecs2  35968  dfrdg4  35969  dfint3  35970  imagesset  35971  elimaint  43673  elintima  43677
  Copyright terms: Public domain W3C validator