MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Structured version   Visualization version   GIF version

Theorem elima 5818
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2 𝐴 ∈ V
2 elimag 5817 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wcel 2083  wrex 3108  Vcvv 3440   class class class wbr 4968  cima 5453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-br 4969  df-opab 5031  df-xp 5456  df-cnv 5458  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463
This theorem is referenced by:  elima2  5819  rninxp  5919  imaco  5986  isarep1  6319  eliman0  6580  funimass4  6605  isomin  6960  dfsup2  8761  dfac10b  9418  hausmapdom  21796  pi1blem  23330  adjbd1o  29549  imaindm  32632  scutun12  32882  madeval2  32901  brimage  32998  dfrecs2  33022  dfrdg4  33023  dfint3  33024  imagesset  33025  elimaint  39499  elintima  39504
  Copyright terms: Public domain W3C validator