Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elima | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elimag 5933 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 class class class wbr 5053 “ cima 5554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 |
This theorem is referenced by: elima2 5935 rninxp 6042 imaco 6115 isarep1 6468 eliman0 6752 funimass4 6777 isomin 7146 dfsup2 9060 dfac10b 9753 hausmapdom 22397 pi1blem 23936 adjbd1o 30166 imaindm 33472 scutun12 33741 madeval2 33774 brimage 33965 dfrecs2 33989 dfrdg4 33990 dfint3 33991 imagesset 33992 elimaint 40933 elintima 40938 |
Copyright terms: Public domain | W3C validator |