| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elima | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
| Ref | Expression |
|---|---|
| elima.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elima | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elima.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elimag 6038 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 class class class wbr 5110 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: elima2 6040 rninxp 6155 imaco 6227 imaindm 6275 isarep1 6609 isarep1OLD 6610 eliman0 6901 funimass4 6928 isomin 7315 dfsup2 9402 dfac10b 10100 hausmapdom 23394 pi1blem 24946 scutun12 27729 madeval2 27768 adjbd1o 32021 brimage 35921 dfrecs2 35945 dfrdg4 35946 dfint3 35947 imagesset 35948 elimaint 43645 elintima 43649 |
| Copyright terms: Public domain | W3C validator |