MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Structured version   Visualization version   GIF version

Theorem elima 5963
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2 𝐴 ∈ V
2 elimag 5962 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wrex 3064  Vcvv 3422   class class class wbr 5070  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  elima2  5964  rninxp  6071  imaco  6144  isarep1  6506  eliman0  6791  funimass4  6816  isomin  7188  dfsup2  9133  dfac10b  9826  hausmapdom  22559  pi1blem  24108  adjbd1o  30348  imaindm  33659  scutun12  33931  madeval2  33964  brimage  34155  dfrecs2  34179  dfrdg4  34180  dfint3  34181  imagesset  34182  elimaint  41146  elintima  41150
  Copyright terms: Public domain W3C validator