| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elima | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
| Ref | Expression |
|---|---|
| elima.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elima | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elima.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elimag 6019 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 class class class wbr 5095 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: elima2 6021 rninxp 6132 imaco 6204 imaindm 6251 isarep1 6575 eliman0 6864 funimass4 6891 isomin 7278 dfsup2 9353 dfac10b 10053 hausmapdom 23403 pi1blem 24955 scutun12 27739 madeval2 27781 adjbd1o 32047 brimage 35902 dfrecs2 35926 dfrdg4 35927 dfint3 35928 imagesset 35929 elimaint 43625 elintima 43629 |
| Copyright terms: Public domain | W3C validator |