MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Structured version   Visualization version   GIF version

Theorem elima 6039
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2 𝐴 ∈ V
2 elimag 6038 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wrex 3054  Vcvv 3450   class class class wbr 5110  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  elima2  6040  rninxp  6155  imaco  6227  imaindm  6275  isarep1  6609  isarep1OLD  6610  eliman0  6901  funimass4  6928  isomin  7315  dfsup2  9402  dfac10b  10100  hausmapdom  23394  pi1blem  24946  scutun12  27729  madeval2  27768  adjbd1o  32021  brimage  35921  dfrecs2  35945  dfrdg4  35946  dfint3  35947  imagesset  35948  elimaint  43645  elintima  43649
  Copyright terms: Public domain W3C validator